Mathematical system for simulation secondary electromagnetic effects
Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 103-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

Radiation of different objects by the intense flows of X-rays and gamma rays results to the appearance of the whole number of phenomena called System Generated Electromagnetic Pulse (SGEMP). Generation of electromagnetic fields by the assembly of electrons emitted from the interior and exterior surfaces of the illuminated object is the basis of SGEMP. The present paper contains the results of computational technology designed for the forecasting of the electromagnetic effects in complex three-dimensional objects which appear under the influence of X-rays and gamma-rays. In its basis there is a hierarchical system of mathematical models created on the equations set of Maxwell–Vlasov for describing of physical processes typical for SGEMP and the system of geometrical models of the object under consideration.
@article{MM_2005_17_7_a10,
     author = {Yu. N. Lazarev and P. V. Petrov and E. V. Dyankova and A. V. Vronsky and Yu. G. Syrtsova and Ya. Z. Kandiev},
     title = {Mathematical system for simulation secondary electromagnetic effects},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--119},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_7_a10/}
}
TY  - JOUR
AU  - Yu. N. Lazarev
AU  - P. V. Petrov
AU  - E. V. Dyankova
AU  - A. V. Vronsky
AU  - Yu. G. Syrtsova
AU  - Ya. Z. Kandiev
TI  - Mathematical system for simulation secondary electromagnetic effects
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 103
EP  - 119
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_7_a10/
LA  - ru
ID  - MM_2005_17_7_a10
ER  - 
%0 Journal Article
%A Yu. N. Lazarev
%A P. V. Petrov
%A E. V. Dyankova
%A A. V. Vronsky
%A Yu. G. Syrtsova
%A Ya. Z. Kandiev
%T Mathematical system for simulation secondary electromagnetic effects
%J Matematičeskoe modelirovanie
%D 2005
%P 103-119
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_7_a10/
%G ru
%F MM_2005_17_7_a10
Yu. N. Lazarev; P. V. Petrov; E. V. Dyankova; A. V. Vronsky; Yu. G. Syrtsova; Ya. Z. Kandiev. Mathematical system for simulation secondary electromagnetic effects. Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 103-119. http://geodesic.mathdoc.fr/item/MM_2005_17_7_a10/

[1] C. L. Logmire, “State of the Art in IEMP and SGEMP calculations”, IEEE Trans. on Nucl. Science, NS-22:6 (1975), 2340–2344 | DOI

[2] D. F. Higgins, K. S. Lee, L. Marin, “System-Generated EMP”, IEEE Trans. Nucl. Sci., NS-25:6 (1978), 1329

[3] L. O. Myrova, A. Z. Chepizhenko, Obespechenie stoikosti apparatury svyazi k ioniziruyuschim i elektromagnitnym izlucheniyam, Radio i svyaz, M., 1988 | MR

[4] V. V. Antipin i dr., “Vliyanie moschnykh mikrovolnovykh pomekh na poluprovodnikovye pribory i mikroskhemy”, Zarubezhnaya radioelektronika, no. 1, Radioelektronika, M., 1995, 37 | MR

[5] W. J. Karzas, R. Latter, “Electromagnetic Radiation from a Nuclear Explosion in Space”, Phys. Rev., 126:6 (1962), 1919–1926 | DOI | MR

[6] C. L. Logmire, “State of the Art in IEMP and SGEMP calculations”, IEEE Trans. on Nucl. Science, NS-22:6 (1975), 2340 | DOI

[7] S. N. Ganaga, L. N. Zdukhod, S. V. Panteleev, Yu. V. Parfenov, O. F. Tarasov, A. V. Shapranov, “Elektrodinamicheskoe deistvie ioniziruyuschikh izluchenii”, Fizika yadernogo vzryva, t. 2, ed. V. M. Loborev, 2007, 107

[8] D. A. Fromme, R. Stettner, V. A. J. van Lint, C. Longmire., R. F. Leadon, “SGEMP Response Investigations With Exploring-wire photons, Part I”, IEEE Trans on Nucl. Sci., 24:6 (1977), 2371 | DOI

[9] A. A. Samarskii, A. P. Mikhailov, Matematicheskoe modelirovanie, FIZMATLIT, M., 2002 | MR | Zbl

[10] Yu. A. Berezin, M. P. Fedorchuk, Modelirovanie nestatsionarnykh plazmennykh protsessov, VO Nauka, Novosibirsk, 1993 | MR | Zbl

[11] T. A Timolillo, J. P. Wondra, “MEEC-3D a computer code for self-consistent solution of the Maxwell–Lorentz three species air chemistry equations in three dimensions”, IEEE Trans. on Nucl. Science, NS-24:6 (1977), 2449 | DOI

[12] A. Lengdon, B. Lazinski, “Elektromagnitnye i relyativistskie modeli plazmy”, Vychislitelnye metody v fizike plazmy, UTS, ed. Dzh. Killin, Mir, M., 1980

[13] R. Khokni., Dzh. Istvud, Chislennoe modelirovanie metodom chastits, Mir, M., 1987

[14] J. V. DiCarlo, M. J. Kusher, “Solving the spatially depend Boltzmann's equation for the electron-velocity distribution using flux corrected transport”, J. Appl. Phys., 66(12) (1989), 5763 | DOI

[15] A. Ghizzo, P. Bertrand., M. M. Shoucri et al., “A Vlasov Code for the Numerical Simulation of Stimulated Raman Scattering”, J. Comp. Phys., 90 (1997), 431 | DOI | MR

[16] Yu. N. Lazarev, P. V. Petrov, Sverkhsvetovoi istochnik napravlennogo elektromagnitnogo izlucheniya, Preprint No 9, VNIITF, 1991

[17] O. S. Shirokovskaya, L. V. Sokolov, “Neyavnye konservativnye monotonnye skhemy povyshennoi tochnosti dlya chislennogo resheniya uravneniya perenosa”, VANT, ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 1998, no. 2, 31–40

[18] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media”, IEEE Trans. Ant. Prop., AP-14 (1966), 302–307

[19] E. V. Diyankova, O. S. Shirokovskaya, “Reshenie uravnenii Nyutona–Lorentsa v komplekse EMC2D”, VANT, seriya Matematicheskoe modelirovanie fizicheskikh protsessov, 1994, no. 3 | Zbl

[20] P. J. Mardahl, J. P. Verboncoeur, “Charge conservation in electromagnetic PIC codes; spectral comparison of Boris/DADI and Langdon–Marder methods”, Comp. Phys. Comm., 106 (1997), 219–229 | DOI | Zbl

[21] J. W. Eastwood, “The Virtual Particle Electromagnetic Particle-Mesh Method”, Comp. Phys. Comm., 64 (1991), 252–266 | DOI

[22] D. D. Batkaev, Ya. Z. Kandiev, Yu. N. Lazarev, P. V. Petrov, “Raschet spektralno-uglovogo raspredeleniya elektronov emissii iz alyuminiya pri naklonnom padenii gamma-izlucheniya”, Atomnaya energiya, 71 (1991), 569–573 | MR

[23] N. J. Carron, C. L. Longmire, “Scaling Behavior of The Time-Dependent SGEMP Boundary Layer”, IEEE Trans. on Nucl. Sci., NS-25:6 (1978), 1329 | DOI

[24] N. J. Carron, C. L. Longmire, “Structure of the Steady State SGEMP Boundary Layer”, IEEE Trans. on Nucl. Sci., NS-23:6 (1976), 1086

[25] N. J. Carron, C. L. Longmire, “Electromagnetic Pulse Produced by Obliquely Incident X-Rays”, IEEE Trans. On Nucl. Sci., NS-23:6 (1976), 1897–1902 | DOI

[26] M. Schmidt, “Elementary External SGEMP Model for System Engineering Design”, IEEE Trans. on Nucl. Science, NS-32:6 (1985), 2456