Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model
Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 11-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of two-parameters recursion set, the dynamics of two antagonistic populations is studied. The areas of change of the managing parameters guaranteeing realization of a certain evolutionary situation are determined: zones of the steady decisions, zone of occurrence bifurcations and cycles, zone of chaos and uncertainty.
@article{MM_2005_17_7_a1,
     author = {V. N. Dumachev and V. A. Rodin},
     title = {Evolution of antagonistic-cooperating populations on base of two-parametrical {Ferhjust--Pirls} model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {11--22},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/}
}
TY  - JOUR
AU  - V. N. Dumachev
AU  - V. A. Rodin
TI  - Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 11
EP  - 22
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/
LA  - ru
ID  - MM_2005_17_7_a1
ER  - 
%0 Journal Article
%A V. N. Dumachev
%A V. A. Rodin
%T Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model
%J Matematičeskoe modelirovanie
%D 2005
%P 11-22
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/
%G ru
%F MM_2005_17_7_a1
V. N. Dumachev; V. A. Rodin. Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model. Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 11-22. http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/

[1] Kompyutery i nelineinye yavleniya, Nauka, M., 1988, 214 pp. | MR

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2004, 672 pp. | MR

[3] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Nauk. dumka, Kiev, 1989, 216 pp. | MR

[4] Malinetskii G. G., Potapov A. B., Sovremennye problemy nelineinoi dinamiki, URSS, M., 2000, 336 pp. | MR

[5] Sharkovskii A. N., “Sosuschestvovanie tsiklov nepreryvnogo otobrazheniya pryamoi v sebya”, UMZh, 16:1 (1964), 61–71 | MR

[6] Skaletskaya E. I., Frisman E. Ya., Shapiro A. P., Diskretnye modeli dinamiki chislennosti populyatsii i optimizatsiya promysla, Nauka, M., 1979, 164 pp. | MR

[7] Shapiro A. P., “Ob ustoichivosti populyatsii kannibalov”, Matem. Modelirovanie populyatsionnykh ekologicheskikh protsessov, Vladivostok, 1987, 106–112 | MR

[8] Kuznetsov S. P., “Dinamika dvukh odnonapravleno-svyazannykh sistem Feigenbauma u poroga giperkhaosa. Renormogruppovoi analiz”, Izv. vuzov. Radiofizika, 33:7 (1990), 788–792 | MR

[9] Kuznetsov S. P., Dinamicheskii khaos, Fiz.-mat. lit., M., 2001, 296 pp. | MR