Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2005_17_7_a1, author = {V. N. Dumachev and V. A. Rodin}, title = {Evolution of antagonistic-cooperating populations on base of two-parametrical {Ferhjust--Pirls} model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {11--22}, publisher = {mathdoc}, volume = {17}, number = {7}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/} }
TY - JOUR AU - V. N. Dumachev AU - V. A. Rodin TI - Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model JO - Matematičeskoe modelirovanie PY - 2005 SP - 11 EP - 22 VL - 17 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/ LA - ru ID - MM_2005_17_7_a1 ER -
%0 Journal Article %A V. N. Dumachev %A V. A. Rodin %T Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model %J Matematičeskoe modelirovanie %D 2005 %P 11-22 %V 17 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/ %G ru %F MM_2005_17_7_a1
V. N. Dumachev; V. A. Rodin. Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model. Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 11-22. http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/
[1] Kompyutery i nelineinye yavleniya, Nauka, M., 1988, 214 pp. | MR
[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2004, 672 pp. | MR
[3] Sharkovskii A. N., Kolyada S. F., Sivak A. G., Fedorenko V. V., Dinamika odnomernykh otobrazhenii, Nauk. dumka, Kiev, 1989, 216 pp. | MR
[4] Malinetskii G. G., Potapov A. B., Sovremennye problemy nelineinoi dinamiki, URSS, M., 2000, 336 pp. | MR
[5] Sharkovskii A. N., “Sosuschestvovanie tsiklov nepreryvnogo otobrazheniya pryamoi v sebya”, UMZh, 16:1 (1964), 61–71 | MR
[6] Skaletskaya E. I., Frisman E. Ya., Shapiro A. P., Diskretnye modeli dinamiki chislennosti populyatsii i optimizatsiya promysla, Nauka, M., 1979, 164 pp. | MR
[7] Shapiro A. P., “Ob ustoichivosti populyatsii kannibalov”, Matem. Modelirovanie populyatsionnykh ekologicheskikh protsessov, Vladivostok, 1987, 106–112 | MR
[8] Kuznetsov S. P., “Dinamika dvukh odnonapravleno-svyazannykh sistem Feigenbauma u poroga giperkhaosa. Renormogruppovoi analiz”, Izv. vuzov. Radiofizika, 33:7 (1990), 788–792 | MR
[9] Kuznetsov S. P., Dinamicheskii khaos, Fiz.-mat. lit., M., 2001, 296 pp. | MR