Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model
Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 11-22

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of two-parameters recursion set, the dynamics of two antagonistic populations is studied. The areas of change of the managing parameters guaranteeing realization of a certain evolutionary situation are determined: zones of the steady decisions, zone of occurrence bifurcations and cycles, zone of chaos and uncertainty.
@article{MM_2005_17_7_a1,
     author = {V. N. Dumachev and V. A. Rodin},
     title = {Evolution of antagonistic-cooperating populations on base of two-parametrical {Ferhjust--Pirls} model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {11--22},
     publisher = {mathdoc},
     volume = {17},
     number = {7},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/}
}
TY  - JOUR
AU  - V. N. Dumachev
AU  - V. A. Rodin
TI  - Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 11
EP  - 22
VL  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/
LA  - ru
ID  - MM_2005_17_7_a1
ER  - 
%0 Journal Article
%A V. N. Dumachev
%A V. A. Rodin
%T Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model
%J Matematičeskoe modelirovanie
%D 2005
%P 11-22
%V 17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/
%G ru
%F MM_2005_17_7_a1
V. N. Dumachev; V. A. Rodin. Evolution of antagonistic-cooperating populations on base of two-parametrical Ferhjust--Pirls model. Matematičeskoe modelirovanie, Tome 17 (2005) no. 7, pp. 11-22. http://geodesic.mathdoc.fr/item/MM_2005_17_7_a1/