About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a~developed turbulence
Matematičeskoe modelirovanie, Tome 17 (2005) no. 10, pp. 47-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of paper is the development of the continuum theory of a structured turbulence of shift fluxions of a fluid simulated total two of interpenetrative continuums, from which one first falls into to an average field of a turbulent motion, and second – to the turbulent time-space chaos including and band of mesoscale coherent structures, localized in space. It is considered, that the mesoscale structures at magnification supercriticality are generated by small-scale vortex formations, which one in two-level model of a turbulence are featured in padding interior parameters of chaos, for example, generalized angular velocities describing a vorticities of a pulsation hydrodynamic field. The opportunity of synergetic birth of mesoscale coherent structures from turbulent chaos (far from complete chaos of athermodynamic equilibrium) is considered at the expense of a phase locking concerning large small-scale vortexes (maximum oscillations inside some spectral interval) at the presence of a noise, connect with “thermal” structure of a vortex continuum. The similar mechanism of forming and evolution of coherent structures in thermodynamical open subsystem of turbulent chaos is interpreted from the point of view of the theory of dynamic systems. The attempted examination is aimed at development of a series of representative hydrodynamic models of space environments, including evolution of a solar System, appearance of turbulent transport on planets and in their atmospheres, problem of an ecology etc. It is prolongation of the stochastics-thermodynamic approach to synergetic exposition of a structured turbulence of astro-geophysical systems developed by the writer in a series of articles [1–3].
@article{MM_2005_17_10_a4,
     author = {A. V. Kolesnichenko},
     title = {About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a~developed turbulence},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--78},
     publisher = {mathdoc},
     volume = {17},
     number = {10},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_10_a4/}
}
TY  - JOUR
AU  - A. V. Kolesnichenko
TI  - About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a~developed turbulence
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 47
EP  - 78
VL  - 17
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_10_a4/
LA  - ru
ID  - MM_2005_17_10_a4
ER  - 
%0 Journal Article
%A A. V. Kolesnichenko
%T About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a~developed turbulence
%J Matematičeskoe modelirovanie
%D 2005
%P 47-78
%V 17
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_10_a4/
%G ru
%F MM_2005_17_10_a4
A. V. Kolesnichenko. About an opportunity of synergetic birth of mesoscale coherent structures in the macroscopic theory of a~developed turbulence. Matematičeskoe modelirovanie, Tome 17 (2005) no. 10, pp. 47-78. http://geodesic.mathdoc.fr/item/MM_2005_17_10_a4/

[1] Kolesnichenko A. V., “Sinergeticheskii podkhod k opisaniyu statsionarno-neravnovesnoi turbulentnosti astrogeofizicheskikh sistem”, Sovremennye problemy mekhaniki i fiziki kosmosa, K yubileyu M. Ya. Marova, Fizmatlit, M., 2003, 123–162 | MR

[2] A. V. Kolesnichenko, “Sinergeticheskii podkhod k opisaniyu statsionarno-neravnovesnoi turbulentnosti”, Matem. modelirovanie, 16:1 (2004), 37–66 | MR | Zbl

[3] A. V. Kolesnichenko, “Termodinamicheskoe opisanie razvitoi turbulentnosti pri uchete kogerentnykh vikhrevykh struktur”, Matem. modelirovanie, 16:9 (2004), 92–126 | MR | Zbl

[4] Taunsend A. A., Struktura turbulentnogo potoka s poperechnym sdvigom, IL, M., 1959, 399 pp. | MR

[5] Crow S. C., Champagne F. H., “Orderly structures in jet turbulence”, J. Fluid Mech., 48 (1971), 547–591 | DOI | MR

[6] Brown G. L., Roshko A., “On density effects and large structures in turbulent mixing layers”, J. Fluid Mech., 64 (1974), 775–816 | DOI | MR

[7] Rabinovich M. I., Suschik M. M., “Regulyarnaya i khaoticheskaya dinamika struktur v techeniyakh zhidkosti”, UFN, 160:1 (1990), 1–64 | MR

[8] Monin A. S., “O kogerentnykh strukturakh v turbulentnykh techeniyakh”, Etyudy o turbulentnosti, Nauka, M., 1994, 7–17 | MR

[9] Frish U., Turbulentnost. Nasledie Kolmogorova, Fazis, M., 1998, 343 pp. | MR

[10] Khlopkov Yu. I., Zharov V. A., Gorelov S. L., Kogerentnye struktury v turbulentnom pogranichnom sloe, MFTI, M., 2002, 267 pp. | MR

[11] Kolesnichenko A. V., Marov M. Ya., Turbulentnost mnogokomponentnykh sred, Nauka, M., 1999 | MR

[12] Belotserkovskii O. M., Ginevskii A. S., Modelirovanie turbulentnykh strui i sledov na osnove metoda diskretnykh vikhrei, Fizmatlit, M., 1995 | MR

[13] Obukhov A. M., “Some specific features of atmospheric turbulence”, J. Fluid Mech., 13:1 (1962), 77–81 | DOI | MR

[14] Landau L. D., Lifshits V. M., Gidrodinamika, Nauka, M., 1988, 733 pp. | MR

[15] Ya. G. Sinai, L. P. Shilnikov (red.), Strannye attraktory, Sbornik statei. Per. s ang., Mir, M., 1981, 253 pp. | MR

[16] Ruelle D., Takkens F., “On the nature of turbulence”, Commun. Math. Phys., 20 (1971), 167–192 | DOI | MR | Zbl

[17] Rabinovich M. I., “Stokhasticheskie avtokolebaniya i turbulentnost”, UFN, 125 (1978), 123–168 | MR

[18] Landa P. S., Avtokolebaniya v raspredelennykh sistemakh, Nauka, Glavnaya redaktsiya matematicheskoi literatury, M., 1983, 320 pp. | MR | Zbl

[19] Rabinovich M., Vvedenie v teoriyu kolebanii i voln, Fizmatgiz, M., 1984, 432 pp. | MR | Zbl

[20] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatgiz, M., 1963, 410 pp. | MR

[21] Pikovskii A. S., Rozenblyum M. G., Kurts Yu., Sinkhronizatsiya. Fundamentalnoe nelineinoe yavlenie, Tekhnosfera, M., 2003, 496 pp. | MR

[22] Kuramoto Y., Chemical oscillations, waves and turbulence, Springer, Berlin, 1984, 257 | MR | Zbl

[23] Pikovsky A., Rosenblum M., Kurths J., “Synchronization in a Population of Globally Coupled Chaotic Oscillators”, Europhys. Lett., 34:3 (1996), 165–170 | DOI | MR

[24] Osipov G., Pikovsky A., Rosenblum M. and J. Kurths, “Phase Synchronization Effects in a Lattice of Nonidentical Rossler Oscillators”, Phys. Rev. E, 55:3 (1997), 2353–2361 | DOI | MR

[25] Prigozhin I., Stengers I., Vremya. Khaos. Kvant. K resheniyu paradoksa vremeni, Progress, M., 1994, 240 pp. | MR

[26] Kolmogorov A. N., “Lokalnaya struktura turbulentnosti v neszhimaemoi zhidkosti pri ochen bolshikh chislakh Reinoldsa”, Doklady AN SSSR, 30 (1941), 299–303 | MR

[27] Kolmogorov A. N., “Utochnenie predstavlenii o lokalnoi strukture turbulentnosti v neszhimaemoi vyazkoi zhidkosti pri bolshikh chislakh Reinoldsa”, Mecanique de la turbulence, Coloq. Intern. CNRS (Marseille, aout–sept. 1961), Paris, 1962, 447–458, Na rus. i fr. yaz. | MR

[28] Kraichnan R. H., “The structure of isotropic turbulence at very high Reynolds numbers”, J. Fluid Mech., 5 (1959), 497–543 | DOI | MR | Zbl

[29] Kolesnichenko A. V., “Sootnosheniya Stefana–Maksvella i potok tepla dlya turbulentnykh mnogokomponentnykh sploshnykh sred”, Problemy sovremennoi mekhaniki, K yubileyu akad. L. I. Sedova, ed. S. S. Grigoryan, MGU, M., 1998, 52–74 | MR

[30] Klimontovich Yu. L., Statisticheskaya teoriya otkrytykh sistem, TOO “Yanus”, M., 1995, 624 pp. | MR

[31] Monin A. S., Yaglom A. M., Statisticheskaya gidromekhanika, t. 2, Gidrometeoizdat, S.-Pb., 1996, 742 pp. | MR

[32] Kaizer Dzh., Statisticheskaya termodinamika neravnovesnykh protsessov, Mir, M., 1990, 607 pp. | MR

[33] Anischenko V. S., Astakhov V. V., Vadivasova T. E., Neiman A. B., Strelkova G. I., Shimanskii-Gaier L., Nelineinye effekty v khaoticheskikh i stokhasticheskikh sistemakh, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003, 544 pp. | MR

[34] Graham R., “Stochastic Methods in Nonequilibrium Thermodynamics”, Stochastic Nonlinear Systems Physics, Chemistry, and Biology, Proc. of the Workshop (Bielefeld, Fed. Rep. of Germany, October 5–11, 1980), eds. Arnold L., Lefever R., Springer-Verlag, Berlin–Heidelberg–N.Y., 1981, 202–212 | MR | Zbl

[35] Prigozhin I. Kondepudi D., Sovremennaya termodinamika. Ot teplovykh dvigatelei do dissipativnykh struktur, Mir, M., 2002, 461 pp. | MR

[36] Marsden J. E., McCracren M., The Hopf Bifurcation and its Applications, Applied Math. Sci., 19, Springer, Berlin–Heidelberg–New York, 1976, 289 pp. | MR | Zbl

[37] Starr V. P., Fizika yavlenii s otritsatelnoi vyazkostyu, Mir, M., 1971, 260 pp. | MR

[38] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii v nelineinoi dinamike, Chast 1, Moskva–Izhevsk, 2004, 416 pp. | MR

[39] Tikhonov V. I., Nelineinye preobrazovaniya sluchainykh protsessov, Radio i svyaz, M., 1986, 296 pp. | MR | Zbl

[40] Khan G., Shapiro S., Statisticheskie modeli v inzhenernykh zadachakh, Mir, M., 1969, 396 pp. | MR

[41] Stratonovich R. L., Izbrannye voprosy teorii fluktuatsii v radiotekhnike., Sov. Radio, M., 1961, 558 pp. | MR | Zbl

[42] Yanke E., Emde F, Lesh F., Spetsialnye funktsii. Formuly grafiki, tablitsy, Nauka, M., 1977, 340 pp. | MR

[43] Akopyan I. G., “Ob ustanovlenii sinkhronnogo rezhima v lampovom generatore pri nalichii pomekh”, Radiotekhnika i elektronika, 11:1 (1966), 34–56 | MR

[44] La Frieda J. R., Lindsey W. C., “Transient analysis of phase-locked tracking systems in the presence of noise”, Trans. IEEE, IT-19:2 (1973), 36 | MR

[45] Migdal A. A., “Vikhrevoe uravnenie Fokkera–Planka”, Nelineinye volny. Struktury i bifurkatsii, Nauka, M., 1987, 159–174 | MR