The description of the Russian stock market within the Heston model
Matematičeskoe modelirovanie, Tome 17 (2005) no. 10, pp. 31-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Heston model is applied for the description of the Russian stock market. Within this model a dynamics of a financial asset is considered as a geometrical Brownian motion with stochastic volatility. Its shown that for a number of stocks traded at MICEX (stocks РАО “ЕЭС”, “Лукойл”, “Сургутнефтегаз”) the probability distributions for log-returns of stock’s prices obtained on a basis of the model are in a good agreement with empirical distributions. The parameters of the model have been estimated for every one above stocks. In order to analyzed their, the Heston model has been applied to description of so-called “leverage effect” establishing a negative correlation between past returns and future volatility. However, as it has appeared, available data do not allow to reveal this effect on the Russian stock market.
@article{MM_2005_17_10_a2,
     author = {G. L. Buchbinder and K. M. Chistilin},
     title = {The description of the {Russian} stock market within the {Heston} model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {31--38},
     publisher = {mathdoc},
     volume = {17},
     number = {10},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2005_17_10_a2/}
}
TY  - JOUR
AU  - G. L. Buchbinder
AU  - K. M. Chistilin
TI  - The description of the Russian stock market within the Heston model
JO  - Matematičeskoe modelirovanie
PY  - 2005
SP  - 31
EP  - 38
VL  - 17
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2005_17_10_a2/
LA  - ru
ID  - MM_2005_17_10_a2
ER  - 
%0 Journal Article
%A G. L. Buchbinder
%A K. M. Chistilin
%T The description of the Russian stock market within the Heston model
%J Matematičeskoe modelirovanie
%D 2005
%P 31-38
%V 17
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2005_17_10_a2/
%G ru
%F MM_2005_17_10_a2
G. L. Buchbinder; K. M. Chistilin. The description of the Russian stock market within the Heston model. Matematičeskoe modelirovanie, Tome 17 (2005) no. 10, pp. 31-38. http://geodesic.mathdoc.fr/item/MM_2005_17_10_a2/

[1] Mantegna R., Stanley H. E., An introduction to Econophysics, Cambridge University Press, Cambridge, 1999, 148 | MR

[2] Cont R., “Empirical properties of asset returns: stylized facts and statistical issues”, Quant. Finance, 1 (2001), 223–236 | DOI | MR

[3] Shiryaev F. N., “O nekotorykh ponyatiyakh i stokhasticheskikh modelyakh finansovoi matematiki”, Teoriya veroyatn. i ee primen., 39 (1994), 5–22 | MR

[4] Heston S. L., “A closed-form solution for options with stochastic volatility with applications to bond and currency options”, Rev. Financial Studies, 6 (1993), 327–343 | DOI | MR

[5] Dragulescu A., Yakovenko V. M., “Probability distribution of returns in the Heston model with stochastic volatility”, Quant. Finance, 2 (2002), 443–453 | DOI | MR

[6] Silva A., Yakovenko V. M., “Comparison between the probability distribution of returns in the Heston model and empirical dara for stock indices”, Physica A, 324 (2003), 303–311 | DOI | MR

[7] Silva A., Prange R. E., Yakovenko V. M., Expotential distribution of financial returns at mesoscopic time lags: a new stylized fact, arXiv:cond-mat/0401225v1 | MR

[8] Vicento R., at al., Common underlying dynamics in an emerging market: from minutes to months, arXiv:cond-mat/0402185v1 | MR

[9] Perello J., Masoliver J., “Random diffusion and leverage effect in financial markets”, Phys. Rev. E, 67 (2003), 037102–7 | DOI | MR

[10] Gardiner K. V., Stokhasticheskie metody v estestvennykh naukakh, Mir, M., 1986, 512 pp. | MR | Zbl

[11] Bouchaud J.-P., Matach A., Potters M., “Leverage effect in financial markets: the retarded volatility model”, Phys. Rev. Lett., 87 (2001), 228701–4 | DOI | MR

[12] Bouchaud J.-P., Potters M., Theory of Financial Risks, Cambridge University Press, Cambridge, UK, 2000, 487 | MR | Zbl