Simulation of evolution of temperature fields in non-uniform media
Matematičeskoe modelirovanie, Tome 16 (2004) no. 9, pp. 72-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

An efficient calculation algorithm is considered for non-stationary temperature fields in non-uniform media with varying coefficient of thermal conduction (for such media the composite materials with piecewise constant values of thermal conduction coefficient in various areas can be considered as well). Numerical calculations are presented for a number of simulation tasks.
@article{MM_2004_16_9_a5,
     author = {L. K. Martinson and K. V. Morozov},
     title = {Simulation of evolution of temperature fields in non-uniform media},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {16},
     number = {9},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_9_a5/}
}
TY  - JOUR
AU  - L. K. Martinson
AU  - K. V. Morozov
TI  - Simulation of evolution of temperature fields in non-uniform media
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 72
EP  - 82
VL  - 16
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_9_a5/
LA  - ru
ID  - MM_2004_16_9_a5
ER  - 
%0 Journal Article
%A L. K. Martinson
%A K. V. Morozov
%T Simulation of evolution of temperature fields in non-uniform media
%J Matematičeskoe modelirovanie
%D 2004
%P 72-82
%V 16
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_9_a5/
%G ru
%F MM_2004_16_9_a5
L. K. Martinson; K. V. Morozov. Simulation of evolution of temperature fields in non-uniform media. Matematičeskoe modelirovanie, Tome 16 (2004) no. 9, pp. 72-82. http://geodesic.mathdoc.fr/item/MM_2004_16_9_a5/

[1] Zarubin B. C., Inzhenernye metody resheniya zadach teploprovodnosti, Energoatomizdat, M., 1983, 328 pp.

[2] Mazhukin V. I., Malafei D. A., Matus P. P., Samarskii A. A., “Raznostnye skhemy na neravnomernykh setkakh dlya uravnenii matematicheskoi fiziki s peremennymi koeffitsientami”, ZhVM i MF, 41:3 (2001), 407–419 | MR | Zbl

[3] Zverev V. G., “Ob odnoi spetsialnoi raznostnoi skheme dlya resheniya kraevykh zadach teplomassoobmena”, ZhVM i MF, 43:2 (2003), 265–278 | MR | Zbl

[4] Maloe Yu. I., Martinson L. K., Rogozhin V. M., “Matematicheskoe modelirovanie protsessov teplomassoperenosa pri plazmennom napylenii”, Vestnik MGTU im. N. E. Baumana, seriya “Mashinostroenie”, 1994, no. 3, 3–17

[5] Martinson L. K., Morozov K. V., “Modelirovanie i raschët temperaturnykh polei v neodnorodnykh sredakh”, Vestnik MGTU im. N. E. Baumana, seriya “Estestvennye nauki”, 2002, no. 2, 56–68

[6] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR

[7] Bleikhut R., Bystrye algoritmy tsifrovoi obrabotki signalov, Mir, M., 1989, 448 pp. | MR

[8] Repin S. I., Frolov M. E., “Ob aposteriornykh otsenkakh tochnosti priblizhennykh reshenii kraevykh zadach dlya uravnenii ellipticheskogo tipa”, ZhVMiMF, 42:12 (2002), 1774–1787 | MR | Zbl

[9] Vabischevich P. I., Metod fiktivnykh oblastei v zadachakh matematicheskoi fiziki, Izd-vo MGU, M., 1991, 156 pp. | Zbl

[10] Maloe Yu. I., Martinson L. K., “Matematicheskoe modelirovanie protsessov perenosa v nekotorykh zadachakh ekologicheskogo prognozirovaniya”, Vestnik MGTU im. N. E. Baumana, seriya “Mashinostroenie”, 1992, no. 4, 108–114