Modelling of kinetics of atomic ensemble in a light field using the langevin equation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 9, pp. 49-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation of kinetics of atomic ensemble in resonant non-uniformly polarized laser field within the bounds of quasiclassical approximation is considered on the basis of step-by-step integration of Langevin equation (LE). Characteristic properties of this equation are the vortextype component in the light-induced force and anisotropy of tensor of dissipation in the regular force, as well as coordinate dependence and anisotropy of correlation tensor of the random force. Various algorithms of step-by-step integration of LE are presented. For a two-dimensional (2D) model the influence of vortex-type component in force and the influence of anisotropy of processes of dissipation and diffusion are investigated for the coordinate and momentum distributions of atoms which are obtained by means of modelling of dynamics of single particle in accordance with LE. Some features in three-beam 2D configuration of light field are considered for kinetic distributions, which are formed on basis of various schemes of step-by-step integration of LE.
@article{MM_2004_16_9_a3,
     author = {A. V. Bezverbny and A. V. Shapovalov},
     title = {Modelling of kinetics of atomic ensemble in a light field using the langevin equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {49--60},
     publisher = {mathdoc},
     volume = {16},
     number = {9},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_9_a3/}
}
TY  - JOUR
AU  - A. V. Bezverbny
AU  - A. V. Shapovalov
TI  - Modelling of kinetics of atomic ensemble in a light field using the langevin equation
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 49
EP  - 60
VL  - 16
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_9_a3/
LA  - ru
ID  - MM_2004_16_9_a3
ER  - 
%0 Journal Article
%A A. V. Bezverbny
%A A. V. Shapovalov
%T Modelling of kinetics of atomic ensemble in a light field using the langevin equation
%J Matematičeskoe modelirovanie
%D 2004
%P 49-60
%V 16
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_9_a3/
%G ru
%F MM_2004_16_9_a3
A. V. Bezverbny; A. V. Shapovalov. Modelling of kinetics of atomic ensemble in a light field using the langevin equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 9, pp. 49-60. http://geodesic.mathdoc.fr/item/MM_2004_16_9_a3/

[1] J. Opt. Soc. Am. B, 6:11 (1989)

[2] G. Grynberg, C. Robilliard, “Cold atoms in dissipative optical lattices”, Phys. Reports, 355 (2001), 335–451 | DOI

[3] Y. Gastin, K. Berg-Sørensen, J. Dalibard, K. Mølmer, “Two-dimensional Sisyphus cooling”, Phys. Rev. A, 50:6 (1994), 5092–5115 | DOI

[4] J. Dalibard, Y. Gastin, K. Mølmer, “Wave-function approach to dissipative processes in quantum optics”, Phys. Rev. Lett., 68:5 (1992), 580–583 | DOI

[5] J. Dalibard, C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models”, J. Opt. Soc. Am. B, 6:11 (1989), 2023–2045 | DOI

[6] J. Javanainen, “Density-matrix equations and photon recoil for multistate atoms”, Phys. Rev. A, 44:9 (1991), 5857–5880 | DOI

[7] J. Javanainen, “Numerical experiments in semiclassical laser-cooling theory of multistate atoms”, Phys. Rev. A, 46:9 (1992), 5819–5835 | DOI

[8] K. I. Petsas, G. Grynberg, J.-Y. Courtois, “Semiclassical Monte Carlo approaches for realistic atoms in optical lattices”, Eur. Phys. J. D, 6 (1999), 29–47 | DOI

[9] L. V. Bezverbnyi, O. N. Prudnikov, L. V. Taichenachev i dr., “Sila svetovogo davleniya, koeffitsienty treniya i diffuzii dlya atomov v rezonansnom neodnorodno polyarizovannom pole”, Zhurn. eksp. i teor. fiz., 123:3 (2003), 437–456

[10] A. V. Bezverbnyi, “Vliyanie struktury polevykh invariantov na kinetiku formirovaniya dvumernykh dissipativnykh atomarnykh reshetok”, Izv. vuzov. Fizika, 2003, no. 5, 7–14

[11] A. V. Bezverbnyi, “Prostranstvennaya struktura invariantov v konfiguratsiyakh monokhromaticheskogo polya razmernosti $D>1$”, Zhurn. eksp. i teor. fiz., 124:11 (2003), 981–995

[12] C. Savage, Introduction to light forces, atom cooling, and atom trapping, , 1995, 15 pp. atom-ph/9510004

[13] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1988, 512 pp. | MR

[14] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika. Teoriya neravnovesnykh sistem, Izd-vo MGU, M., 1987, 559 pp. | MR

[15] J. Qiang, S. Habib, A second-order stochastic leap-frog algorithm for Langevin simulation, , 2000, 3 pp. physics/0008196

[16] H. A. Forbert, S. A. Chin, Fourth order algorithms for solving the multivariable Langevin equation and the Kramers equation, , 2000, 19 pp. niucl-th/0006087

[17] H. Nakajima, S. Furui, A new algorithm for numerical simulation of Langevin equations, 1996, 4 pp.

[18] G. N. Milshtein, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo Ural. un-ta, Sverdlovsk, 1988, 224 pp. | MR

[19] R. F. Fox, I. R. Gatland, R. Roy, G. Vemuri, “Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise”, Phys. Rev. A, 38 (1988), 5938–5940 | DOI

[20] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966, 576 pp. | MR