Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_9_a3, author = {A. V. Bezverbny and A. V. Shapovalov}, title = {Modelling of kinetics of atomic ensemble in a light field using the langevin equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {49--60}, publisher = {mathdoc}, volume = {16}, number = {9}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_9_a3/} }
TY - JOUR AU - A. V. Bezverbny AU - A. V. Shapovalov TI - Modelling of kinetics of atomic ensemble in a light field using the langevin equation JO - Matematičeskoe modelirovanie PY - 2004 SP - 49 EP - 60 VL - 16 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2004_16_9_a3/ LA - ru ID - MM_2004_16_9_a3 ER -
A. V. Bezverbny; A. V. Shapovalov. Modelling of kinetics of atomic ensemble in a light field using the langevin equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 9, pp. 49-60. http://geodesic.mathdoc.fr/item/MM_2004_16_9_a3/
[1] J. Opt. Soc. Am. B, 6:11 (1989)
[2] G. Grynberg, C. Robilliard, “Cold atoms in dissipative optical lattices”, Phys. Reports, 355 (2001), 335–451 | DOI
[3] Y. Gastin, K. Berg-Sørensen, J. Dalibard, K. Mølmer, “Two-dimensional Sisyphus cooling”, Phys. Rev. A, 50:6 (1994), 5092–5115 | DOI
[4] J. Dalibard, Y. Gastin, K. Mølmer, “Wave-function approach to dissipative processes in quantum optics”, Phys. Rev. Lett., 68:5 (1992), 580–583 | DOI
[5] J. Dalibard, C. Cohen-Tannoudji, “Laser cooling below the Doppler limit by polarization gradients: simple theoretical models”, J. Opt. Soc. Am. B, 6:11 (1989), 2023–2045 | DOI
[6] J. Javanainen, “Density-matrix equations and photon recoil for multistate atoms”, Phys. Rev. A, 44:9 (1991), 5857–5880 | DOI
[7] J. Javanainen, “Numerical experiments in semiclassical laser-cooling theory of multistate atoms”, Phys. Rev. A, 46:9 (1992), 5819–5835 | DOI
[8] K. I. Petsas, G. Grynberg, J.-Y. Courtois, “Semiclassical Monte Carlo approaches for realistic atoms in optical lattices”, Eur. Phys. J. D, 6 (1999), 29–47 | DOI
[9] L. V. Bezverbnyi, O. N. Prudnikov, L. V. Taichenachev i dr., “Sila svetovogo davleniya, koeffitsienty treniya i diffuzii dlya atomov v rezonansnom neodnorodno polyarizovannom pole”, Zhurn. eksp. i teor. fiz., 123:3 (2003), 437–456
[10] A. V. Bezverbnyi, “Vliyanie struktury polevykh invariantov na kinetiku formirovaniya dvumernykh dissipativnykh atomarnykh reshetok”, Izv. vuzov. Fizika, 2003, no. 5, 7–14
[11] A. V. Bezverbnyi, “Prostranstvennaya struktura invariantov v konfiguratsiyakh monokhromaticheskogo polya razmernosti $D>1$”, Zhurn. eksp. i teor. fiz., 124:11 (2003), 981–995
[12] C. Savage, Introduction to light forces, atom cooling, and atom trapping, , 1995, 15 pp. atom-ph/9510004
[13] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1988, 512 pp. | MR
[14] I. A. Kvasnikov, Termodinamika i statisticheskaya fizika. Teoriya neravnovesnykh sistem, Izd-vo MGU, M., 1987, 559 pp. | MR
[15] J. Qiang, S. Habib, A second-order stochastic leap-frog algorithm for Langevin simulation, , 2000, 3 pp. physics/0008196
[16] H. A. Forbert, S. A. Chin, Fourth order algorithms for solving the multivariable Langevin equation and the Kramers equation, , 2000, 19 pp. niucl-th/0006087
[17] H. Nakajima, S. Furui, A new algorithm for numerical simulation of Langevin equations, 1996, 4 pp.
[18] G. N. Milshtein, Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo Ural. un-ta, Sverdlovsk, 1988, 224 pp. | MR
[19] R. F. Fox, I. R. Gatland, R. Roy, G. Vemuri, “Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise”, Phys. Rev. A, 38 (1988), 5938–5940 | DOI
[20] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966, 576 pp. | MR