About one numerical model for reservoir flow near a
Matematičeskoe modelirovanie, Tome 16 (2004) no. 9, pp. 29-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article relates to the problem of a horizontal well productivity estimation under the condition that the near-well flow if effected by nonlinear phenomena. The mathematical model is developed which effectively resolves the problem of fieldscale reservoir simulations taking into account the difference between a wellbore radius and a characteristic collector size. This model incorporates the nonlinear Forscheimer's law of porous flow. For the flow around a single horizontal well the physically reasonable but simplified model of flow structure is proposed which allows to solve analytically the problem of the nonlinear reservoir flow and to construct the analytical expression for the well productivity as the dependence on the reservoir and well properties. We analysed the correctness of this solution and made the comparison between the analytical estimations and well-known numerical results related to flows in homogeneous and stratified reservoirs. By means of such comparative work we defined the admissible as well as optimal macroblock dimensions shapes depending on reservoir shapes and required accuracy of productivity calculations.
@article{MM_2004_16_9_a2,
     author = {V. A. Gasilov and E. V. Kuznetsov and B. N. Chetverushkin},
     title = {About one numerical model for reservoir flow near a},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--48},
     publisher = {mathdoc},
     volume = {16},
     number = {9},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_9_a2/}
}
TY  - JOUR
AU  - V. A. Gasilov
AU  - E. V. Kuznetsov
AU  - B. N. Chetverushkin
TI  - About one numerical model for reservoir flow near a
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 29
EP  - 48
VL  - 16
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_9_a2/
LA  - ru
ID  - MM_2004_16_9_a2
ER  - 
%0 Journal Article
%A V. A. Gasilov
%A E. V. Kuznetsov
%A B. N. Chetverushkin
%T About one numerical model for reservoir flow near a
%J Matematičeskoe modelirovanie
%D 2004
%P 29-48
%V 16
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_9_a2/
%G ru
%F MM_2004_16_9_a2
V. A. Gasilov; E. V. Kuznetsov; B. N. Chetverushkin. About one numerical model for reservoir flow near a. Matematičeskoe modelirovanie, Tome 16 (2004) no. 9, pp. 29-48. http://geodesic.mathdoc.fr/item/MM_2004_16_9_a2/

[1] Rakhitov G. G., Reshenie zadach podzemnoi gidrodinamiki metodom konechnykh raznostei, Trudy VNII-nefti, 10, Gostoptekhizdat, 1957

[2] Rakhitov G. G., Raznostnye metody resheniya zadach razrabotki neftyanykh mestorozhdenii, Nedra, M., 1970

[3] Peaceman D. W., “Interpretation of well-block pressures in numerical reaservoir simulation”, Trans. AIME, Soc. Pet. Eng. J., 265 (1978), 183–194

[4] Andreev R. B., Kryakvina S. A., “Funktsiya istochnika raznostnogo operatora Laplasa”, Zhurn. vychisl. matem. i matem. fiz., 12:2 (1972), 364–373 | MR | Zbl

[5] D. W. Peaceman, “Interpretation of well-block pressure in numerical reservoir simulation with non-square grid blocks and anisotropic permeability”, Soc. Pet. Eng. J., June 1983, 531–543

[6] D. W. Peaceman, Interpretation of well-block pressure in numerical reservoir simulation - Part 3: Some additional well geometries, SPE Paper 16976, Sept. 1987

[7] D. K. Pabu, A. S. Odeh, A.-J. Al-Khalifa, R. C. McCann, The relation between wellblock and well pressure in numerical simulation of horizontal wells - general formulas for arbitrary well locations in grids, SPE Paper 20161, June 1989

[8] Yu Ding, G. Renard, “A new representation of wells in numerical reservoir simulation”, SRE Reservoir Engn., May, 1994, 140–144

[9] R. E. Ewing, R. Lazarov, S. L. Lyons, D. V. Papavassiliou, J. Pasciak, G. Qin, Numerical well model for non-Darcy flow through isotropic media, ISC Research Report ISC-98-11-MATH, 1998

[10] V. A. Garanzha, V. N. Konshin, S. L. Lyons, D. V. Papavassiliou, G. Qin, “Validation of non-Darcy well models using direct numerical simulation”, Lecture Notes in Physics, 2, Springer, 1999, 1–15 | MR

[11] Aliev Z. S., Sheremet V. V., Opredelenie proizvoditelnosti gorizontalnykh skvazhin, vskryvshikh gazovye plasty, Nedra, M., 1995

[12] Leibenzon L. S., Podzemnaya gidro-gazodinamika, Sobranie trudov, t. 2, Izd. AN SSSR, M., 1953

[13] Muscat M., The flow of homogeneous fluids through porous media, Inter. Human Resources Development Corp., Boston M.A., 1982

[14] Zakirov E. S., “Gorizontalnye skvazhiny v sloisto-neodnorodnykh kollektorakh”, Gazovaya promyshlennost, 1996, no. 5–6, 71–73

[15] Zakirov E. S., “Gorizontalnye i vertikalnye skvazhiny v sistemakh podderzhaniya plastovogo davleniya v sloisto-neodnorodnykh kollektorakh”, Gazovaya promyshlennost, 1996, no. 7–8, 55–57

[16] Zakirov E. S., Trekhmernye mnogofaznye zadachi prognozirovaniya, analiza i regulirovaniya razrabotki mestorozhdenii nefti i gaza, Izd-vo “Graal”, M., 2001

[17] Zakirow E. S. Aavatsmark I., Barkve T., Boe O., Mannset T., Discretization on non-orthogonal, curvilinear grids for multiphase flow, Paper presented at 4-th European Conference on the Mathematics of Oil Recovery, Roros, Norway, 7–10 June, 199

[18] Edwards M. G., Rogers C. F., A flux continuous scheme for the full tensor pressure equation, Paper presented at 4-th European Conference on the Mathematics of Oil Recovery, Roros, Norway, 7–10 June, 199