Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_9_a2, author = {V. A. Gasilov and E. V. Kuznetsov and B. N. Chetverushkin}, title = {About one numerical model for reservoir flow near a}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {29--48}, publisher = {mathdoc}, volume = {16}, number = {9}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_9_a2/} }
TY - JOUR AU - V. A. Gasilov AU - E. V. Kuznetsov AU - B. N. Chetverushkin TI - About one numerical model for reservoir flow near a JO - Matematičeskoe modelirovanie PY - 2004 SP - 29 EP - 48 VL - 16 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2004_16_9_a2/ LA - ru ID - MM_2004_16_9_a2 ER -
V. A. Gasilov; E. V. Kuznetsov; B. N. Chetverushkin. About one numerical model for reservoir flow near a. Matematičeskoe modelirovanie, Tome 16 (2004) no. 9, pp. 29-48. http://geodesic.mathdoc.fr/item/MM_2004_16_9_a2/
[1] Rakhitov G. G., Reshenie zadach podzemnoi gidrodinamiki metodom konechnykh raznostei, Trudy VNII-nefti, 10, Gostoptekhizdat, 1957
[2] Rakhitov G. G., Raznostnye metody resheniya zadach razrabotki neftyanykh mestorozhdenii, Nedra, M., 1970
[3] Peaceman D. W., “Interpretation of well-block pressures in numerical reaservoir simulation”, Trans. AIME, Soc. Pet. Eng. J., 265 (1978), 183–194
[4] Andreev R. B., Kryakvina S. A., “Funktsiya istochnika raznostnogo operatora Laplasa”, Zhurn. vychisl. matem. i matem. fiz., 12:2 (1972), 364–373 | MR | Zbl
[5] D. W. Peaceman, “Interpretation of well-block pressure in numerical reservoir simulation with non-square grid blocks and anisotropic permeability”, Soc. Pet. Eng. J., June 1983, 531–543
[6] D. W. Peaceman, Interpretation of well-block pressure in numerical reservoir simulation - Part 3: Some additional well geometries, SPE Paper 16976, Sept. 1987
[7] D. K. Pabu, A. S. Odeh, A.-J. Al-Khalifa, R. C. McCann, The relation between wellblock and well pressure in numerical simulation of horizontal wells - general formulas for arbitrary well locations in grids, SPE Paper 20161, June 1989
[8] Yu Ding, G. Renard, “A new representation of wells in numerical reservoir simulation”, SRE Reservoir Engn., May, 1994, 140–144
[9] R. E. Ewing, R. Lazarov, S. L. Lyons, D. V. Papavassiliou, J. Pasciak, G. Qin, Numerical well model for non-Darcy flow through isotropic media, ISC Research Report ISC-98-11-MATH, 1998
[10] V. A. Garanzha, V. N. Konshin, S. L. Lyons, D. V. Papavassiliou, G. Qin, “Validation of non-Darcy well models using direct numerical simulation”, Lecture Notes in Physics, 2, Springer, 1999, 1–15 | MR
[11] Aliev Z. S., Sheremet V. V., Opredelenie proizvoditelnosti gorizontalnykh skvazhin, vskryvshikh gazovye plasty, Nedra, M., 1995
[12] Leibenzon L. S., Podzemnaya gidro-gazodinamika, Sobranie trudov, t. 2, Izd. AN SSSR, M., 1953
[13] Muscat M., The flow of homogeneous fluids through porous media, Inter. Human Resources Development Corp., Boston M.A., 1982
[14] Zakirov E. S., “Gorizontalnye skvazhiny v sloisto-neodnorodnykh kollektorakh”, Gazovaya promyshlennost, 1996, no. 5–6, 71–73
[15] Zakirov E. S., “Gorizontalnye i vertikalnye skvazhiny v sistemakh podderzhaniya plastovogo davleniya v sloisto-neodnorodnykh kollektorakh”, Gazovaya promyshlennost, 1996, no. 7–8, 55–57
[16] Zakirov E. S., Trekhmernye mnogofaznye zadachi prognozirovaniya, analiza i regulirovaniya razrabotki mestorozhdenii nefti i gaza, Izd-vo “Graal”, M., 2001
[17] Zakirow E. S. Aavatsmark I., Barkve T., Boe O., Mannset T., Discretization on non-orthogonal, curvilinear grids for multiphase flow, Paper presented at 4-th European Conference on the Mathematics of Oil Recovery, Roros, Norway, 7–10 June, 199
[18] Edwards M. G., Rogers C. F., A flux continuous scheme for the full tensor pressure equation, Paper presented at 4-th European Conference on the Mathematics of Oil Recovery, Roros, Norway, 7–10 June, 199