Minimization of residual function by quasi-gradient method for identification of the hydraulic conductivity in case of three-dimensional anisotropic aquifer
Matematičeskoe modelirovanie, Tome 16 (2004) no. 8, pp. 99-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

The identification problem of the hydraulic conductivity in the three-dimensional anisotropic confined aquifer is solved in case of one-phase filtration according to the head values in observation locations. A new quasi-gradient algorithm has been proposed for minimization of a residual function. The sensitivity storage distribution is used for constructing this algorithm. The properties of a residual function in minimum point have been analyzed. These properties are the basis of a new stopping criterion. In this criterion the knowledge of errors in head data is not required.
@article{MM_2004_16_8_a8,
     author = {A. V. Elesin and P. A. Mazurov},
     title = {Minimization of residual function by quasi-gradient method for identification of the hydraulic conductivity in case of three-dimensional anisotropic aquifer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {99--113},
     publisher = {mathdoc},
     volume = {16},
     number = {8},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_8_a8/}
}
TY  - JOUR
AU  - A. V. Elesin
AU  - P. A. Mazurov
TI  - Minimization of residual function by quasi-gradient method for identification of the hydraulic conductivity in case of three-dimensional anisotropic aquifer
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 99
EP  - 113
VL  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_8_a8/
LA  - ru
ID  - MM_2004_16_8_a8
ER  - 
%0 Journal Article
%A A. V. Elesin
%A P. A. Mazurov
%T Minimization of residual function by quasi-gradient method for identification of the hydraulic conductivity in case of three-dimensional anisotropic aquifer
%J Matematičeskoe modelirovanie
%D 2004
%P 99-113
%V 16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_8_a8/
%G ru
%F MM_2004_16_8_a8
A. V. Elesin; P. A. Mazurov. Minimization of residual function by quasi-gradient method for identification of the hydraulic conductivity in case of three-dimensional anisotropic aquifer. Matematičeskoe modelirovanie, Tome 16 (2004) no. 8, pp. 99-113. http://geodesic.mathdoc.fr/item/MM_2004_16_8_a8/

[1] Carrera J., Neuman S. P., “Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information”, Water Resour. Res., 22:2 (1986), 199–210 | DOI

[2] Sun N.-Z., Inverse problems in groundwater modeling, Kluwer Acad., Norwell, Mass., 1994

[3] Yeh W.W-G., “Review of parameter identification procedures in groundwater hydrology: The inverse problem”, Water Resour. Res., 22:2 (1986), 95–108 | DOI

[4] McLaughlin D., Townley L. R., “A reassessment of the groundwater inverse problem”, Water Resour. Res., 32:5 (1996), 1131–1161 | DOI

[5] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986, 288 pp. | MR | Zbl

[6] Mazurov P. A., Elesin A. V., Gabidullina A. N., Kadyrova A. Sh., “Opredelenie parametrov vodonosnykh plastov s ispolzovaniem analiza chuvstvitelnosti”, Sovremennye problemy gidrogeologii i gidromekhaniki, Sb. dokl. konferentsii, SPb., 2002, 462–471

[7] Mazurov P. A., Elesin A. V., Gabidullina A. N., Kadyirova A. Sh., “Use of minimization along the slope for estimation of aquifer parameters”, 4th International Conference on Calibration and reliability in groundwater modelling (Prague, Czech Republic, 17–20 June 2002), 1, 278–281

[8] Mazurov P. A., Gabidullina A. K, Elesin A. V., Kadyrova A. Sh., “Novyi metod minimizatsii funktsii nevyazki pri identifikatsii parametrov vodonosnykh sloev”, Trudy II Mezhdunarodnoi konferentsii “Identifikatsiya sistem i zadachi upravleniya” (Moskva, 29–31 yanvarya 2003), 714–727

[9] Dennis Dzh., Shnabel R., Chislennye metody bezuslovnoi optimizatsii i resheniya nelineinykh uravnenii, Mir, M., 1988, 440 pp. | MR | Zbl

[10] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999, 548 pp.

[11] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988, 552 pp. | MR

[12] Mishina A. P., Proskuryakov I. V., Vysshaya algebra, Nauka, M., 1965, 300 pp. | MR

[13] Letova T. A., Panteleev A. V., Ekstremum funktsii v primerakh i zadachakh, Izd-vo MAI, M., 1998, 376 pp.

[14] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002, 192 pp.

[15] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1998, 288 pp. | MR