On one approach to modeling of living system regulatory mechanisms
Matematičeskoe modelirovanie, Tome 16 (2004) no. 7, pp. 77-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some questions of quantitative analysis of living cell's regulatory system functioning based on the functional-differential equations are considered. Condition equations are constructed taking into account processes cooperation, presence of multifunction feedback and temporary relations in cellular regulatory system. Results of qualitative studies for the equations and their model systems show existence following modes: rest (A), stable functional condition (B), periodic (C) and irregular fluctuations (D). In some cases, there is the «black hole» effect (E) – failure of oscillatory solutions into stable trivial attractor. Correspondence possibility, during model studies, A, B, C, D, and E to real modes of rest, stationary state, stable fluctuations, unpredictable behavior and sudden activity stop allows using the proposed approach for quantitative studies of biosystems regulatory mechanisms at the norm and anomalies.
@article{MM_2004_16_7_a8,
     author = {B. N. Hidirov},
     title = {On one approach to modeling of living system regulatory mechanisms},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--91},
     publisher = {mathdoc},
     volume = {16},
     number = {7},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_7_a8/}
}
TY  - JOUR
AU  - B. N. Hidirov
TI  - On one approach to modeling of living system regulatory mechanisms
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 77
EP  - 91
VL  - 16
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_7_a8/
LA  - ru
ID  - MM_2004_16_7_a8
ER  - 
%0 Journal Article
%A B. N. Hidirov
%T On one approach to modeling of living system regulatory mechanisms
%J Matematičeskoe modelirovanie
%D 2004
%P 77-91
%V 16
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_7_a8/
%G ru
%F MM_2004_16_7_a8
B. N. Hidirov. On one approach to modeling of living system regulatory mechanisms. Matematičeskoe modelirovanie, Tome 16 (2004) no. 7, pp. 77-91. http://geodesic.mathdoc.fr/item/MM_2004_16_7_a8/

[1] Viner N., Kibernetika ili upravlenie i svyaz v zhivotnom i mashine, Nauka, M., 1983

[2] Watson J. D., Crick F. H. C., “The structure of DNA”, Cold. Spring Harbour Symp., 18 (1953), 123

[3] Zhakob F., Mono Zh., “Regulyatsiya aktivnosti genov”, Regulyatornye mekhanizmy kletki, Mir, M., 1964, 278–306

[4] Rashevski N., “Modeli i matematicheskie printsipy v biologii”, Teoreticheskaya matematicheskaya biologiya, Mir, M., 1968, 48–64

[5] Shredinger E., Chto takoe zhizn s tochki zreniya fizika?, Gos. Izd-vo inost. lit., M., 1947

[6] Maini P. K., Painter K. J. and Nguyen Phong Chau H., “Spatial pattern formation in chemical and biological systems”, J. Chem. Soc. Faraday Trans., 93:20 (1997), 3601–3610 | DOI

[7] Plahte E., Mestl T. and Omholt S. W., “A methodological basis for description and analysis of systems with complex switch-like interactions”, J. Math. Biol., 36 (1998), 321–348 | DOI | MR | Zbl

[8] Akutsu T., Miyano S. and Kuhara S., “Inferring qualitative relations in genetic networks and metabolic pathways”, Bioinformatics, 16:8 (2000), 727–734 | DOI

[9] Smolen P., Baxter D. A. and Byrne J. H., “Modeling transcriptional control in gene networks: Methods, recent results and future directions”, Bull. Math. Biol., 62 (2000), 247–292 | DOI

[10] Salgado H., Santos A., Garza-Ramos U., van Helden J., DMaz E. and Collado-Vides J., “RegulonDB (version 2.0): A database on transcriptional regulation in Escherichia coli”, Nucl. Acids Res., 27:1 (2000), 59–60 | DOI | MR

[11] Kolpakov F. A., Ananko E. A., Kolesov G. B. and Kolchanov N. A., “GeneNet: A gene network database and its automated visualization”, Bioinformatics, 14:6 (1999), 529–537 | DOI

[12] Samsonova M. G., Savostyanova E. G., Serov V. N., Spirov A. V. and Reinitz J., “GeNet: A database of genetic networks”, Proc. First Int. Conf. Bioinformatics Genome Regul. Struct., BGRS'98, ICG, Novosibirsk, 1998

[13] Friedman N., Linial M., Nachman L and Pe'er D., “Using Bayesian networks to analyze expression data”, J. Comput. Biol., 7 (2000), 601–620 | DOI

[14] Heckerman D., A tutorial on learning with Bayesian networks, Learning in Graphical Models, ed. M. I. Jordan, Kluwer, Dordrecht, 1998

[15] Huang S., “Gene expression pro ling, genetic networks and cellular states: An integrating concept for tumori- genesis and drug discovery”, J. Mol. Med., 77 (1999), 469–480 | DOI

[16] Gudvin B., Vremennaya organizatsiya kletki, Mir, M., 1966

[17] Tzanev R., Sendov Bl., “A model of the regulatory mechanism of cellular multiplication”, J. Theoret. Biol., New York, 12 (1966), 327–341 | DOI

[18] Sendov B. L., Tzanev R., “Computer simulation of the regenerative processes in the liver”, J. Theoret. Biol., New York, 18 (1968), 90–104 | DOI

[19] Eigen M., Shuster P., Gipertsikl. Printsipy samoorganizatsii makromolekul, Mir, M., 1982

[20] Ratner V. L., Shamin V. V., “Saizery: modelirovanie fundamentalnykh osobennostei molekulyarno-biologicheskoi organizatsii. I. Saizera s nestseplennymi matritsami”, Matematicheskie modeli evolyutsionnoi genetiki, Izd-vo ITs i GSO AN SSSR, Novosibirsk, 1980, 60–82

[21] Smit Dzh., Matematicheskie idei v biologii, Mir, M., 1970, 133–143

[22] Tyson J. J. and Othmer H. G., “The dynamics of feedback control circuits in biochemical pathways”, Prog. Theor. Biol., 5 (1978), 1–62 | Zbl

[23] Khidirov B. N., “Mekhanizmy upravleniya genov: modelirovanie assotsiativnykh molekulyarno-geneticheskikh sistem”, Problemy informatiki i energetiki, 1998, no. 2, 9–13 | MR

[24] Hidirov B. N., “Mathematical modeling of regulation mechanisms of living systems”, International Scientific and Practical Conference “Innovation–2001”, Tashkent, 2001, 156–158

[25] Saidalieva M., “Modelling of regulation mechanisms of cellular communities”, Scientiae Mathematicae Japanicae, 8 (2003), 463–469 | MR

[26] Ruoff P., Vinsjevik M., Monnerjahn C. and Rensing L., “The Goodwin model: Simulating the effect of light pulses on the circadian sporulation rhythm of Neurospora crassa”, J. Theor. Biol., 209 (2001), 29–42 | DOI

[27] Khidirov B. N., Ob odnom metode issledovaniya regulyatoriki zhivykh sistem, Voprosy kibernetiki, 128, RISO AN RUz, Tashkent, 1984

[28] Khidirov B. N., “Regulyatorika zhivykh sistem: osnovnye uravneniya”, Doklady AN RUz, 1998, no. 3, 26–29 | Zbl

[29] Hidirov B. N., “Modelling of regulation mechanisms of living system”, Scientiae Mathematicae Japanicae, 8 (2003), 419–425 | MR

[30] Marri Dzh., “Nelineinye differentsialnye uravneniya v biologii”, Lektsii o modelyakh, Mir, M., 1983, 30–140

[31] MacDonald N., Biological Delay Systems: Linear Stability Theory, Cambridge University Press, Cambridge, 1989 | MR

[32] Ricker W. E., “Stock and recruitment”, Theor. J. Fisheries Res. Bard. Can., 11:5 (1954), 559–623

[33] Carrier T. A. and Keasling J. D., “Investigating autocatalytic gene expression systems through mechanistic modeling”, J. Theor. Biol., 201 (1999), 25–36 | DOI

[34] Wong P., Gladney S. and Keasling J. D., “Mathematical model of the lac operon: Inducer exclusion, catabolite repression, and diauxic growth on glucose and lactose”, Biotechnol. Prog., 13 (1997), 132–143 | DOI

[35] Endy D., You L., Yin J. and Molineux I. J., “Computation, prediction and experimental tests of tness for bacteriophage $T7$ mutants with perOmuted genomes”, Proc. Natl. Acad. Sci. USA, 97:10 (2000), 5375–5380 | DOI

[36] You L. and Yin J., “Simulating the growth of viruses”, Proc. Pac. Symp. Biocomput . (PSB'01), 6, eds. R. B. Altman, A. K. Dunker, L. Hunter, K. Lauderdale and T. E. Klein, World Scientific Publishing, Singapore, 2001, 532–543

[37] Hammond B. J., “Quantitative study of the control of $HIV-1$ gene expression”, J. Theor. Biol., 163 (1993), 199–221 | DOI

[38] Goldbeter A., “A model for circadian oscillations in the Drosophila Period protein (PER)”, Proc. R. Soc. Lond., B, 261 (1995), 319–324 | DOI

[39] Ueda H. R., Hagiwara M. and Kitano H., “Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm”, J. Theor. Biol., 210 (2001), 401–406 | DOI

[40] Khidirov B. N., “Ob odnoi “biologicheskoi” kraevoi zadache differentsialno-raznostnykh uravnenii”, Voprosy kibernetiki, 6, Tashkent, 1974, 132–137

[41] Samarskii A. A., “Predislovie”, Kompyutery, modeli, vychislitelnyi eksperiment, 4, Nauka, M., 1988, 3–15 | MR

[42] Feinman R., Leiton R., Sends M., Feinmanovskie lektsii po fizike, t. 7, Mir, M., 1967, 272 pp.

[43] Glase L., Meki M., Ot chasov k khaosu. Ritmy zhizni, Mir, M., 1991, 107 pp. | MR

[44] Hidirov B. N., Saidalieva M., “Chaos research in autonomous regulating systems”, Proceedings of the WCIS–2000, Tashkent, 2000, 138–140

[45] Khalmuradov A. G., Khidirov B. N., Saidalieva M., Buriev S. B., Akhunov A. A., “Issledovanie regulyatornykh mekhanizmov zhiznedeyatelnosti mikroorganizmov kolichestvennymi metodami”, Uzbekskii biologicheskii zhurnal, 1993, no. 1, 22–25, Tashkent

[46] Khalmuradov A. G., Khidirov B. N., Rasulov A. S, Saidalieva M., “Modelnye issledovaniya mekhanizmov regulyatsii glutaminsintetaznoi aktivnosti odnokletochnykh zelenykh vodoroslei”, DAN RUz, 1991, no. 8–9, 85–87

[47] Kabulov V. K., Zufarov K. A., Yuldashev A. Yu., Saidalieva M., “Issledovanie prisposobitelnykh mekhanizmov slizistoi obolochki kishechnika kolichestvennymi metodami”, DAN RUz, 1992, no. 6–7, 60–63

[48] Hidirova M. B., “Biomechanics of cardiac activation: the simplest equations and modelling results”, Russian Journal of Biomechanics, 5:2 (2001), 95–103