Studying the correctness of boundary problems for Navier--Stokes equations in primitive variables
Matematičeskoe modelirovanie, Tome 16 (2004) no. 7, pp. 68-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Galerkin finite element method was implemented within the framework of the symbolic computation system. This provides studying the correctness of boundary problems for the incompressible viscous flow both numerically and analytically. An approach based on the coupled solution of the Navier–Stokes equations in primitive variables was used. In the problems with the given velocity on boundaries such technique leads to the singular system of linear equations and to impossibility to obtain the solution. The system matrix have zero as multiple eigenvalue. It has been shown that this effect is caused by the solenoidality condition for the velocity field. A regularization approach with a parameter having the physical meaning is also tested. In this case the spectrum contains only one zero, and nonlinear solutions corresponding to experimental data was easily obtained. The boundary problems with the given pressure drop are correct. The Galerkin finite element method for regularized equations is free from scheme viscosity, and the solutions do not depend on the parameters of grids. In commonly used finite-difference methods the different scheme viscosity virtually serves as an implicit regularization parameter, and that results in incommensurability of calculations results.
@article{MM_2004_16_7_a7,
     author = {P. A. Anan'ev and P. K. Volkov and A. V. Pereverzev},
     title = {Studying the correctness of boundary problems for {Navier--Stokes} equations in primitive variables},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {68--76},
     publisher = {mathdoc},
     volume = {16},
     number = {7},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_7_a7/}
}
TY  - JOUR
AU  - P. A. Anan'ev
AU  - P. K. Volkov
AU  - A. V. Pereverzev
TI  - Studying the correctness of boundary problems for Navier--Stokes equations in primitive variables
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 68
EP  - 76
VL  - 16
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_7_a7/
LA  - ru
ID  - MM_2004_16_7_a7
ER  - 
%0 Journal Article
%A P. A. Anan'ev
%A P. K. Volkov
%A A. V. Pereverzev
%T Studying the correctness of boundary problems for Navier--Stokes equations in primitive variables
%J Matematičeskoe modelirovanie
%D 2004
%P 68-76
%V 16
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_7_a7/
%G ru
%F MM_2004_16_7_a7
P. A. Anan'ev; P. K. Volkov; A. V. Pereverzev. Studying the correctness of boundary problems for Navier--Stokes equations in primitive variables. Matematičeskoe modelirovanie, Tome 16 (2004) no. 7, pp. 68-76. http://geodesic.mathdoc.fr/item/MM_2004_16_7_a7/

[1] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[2] Rosenfeld M., Kwak D., Vinokur M., “A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate system”, J. Comput. Phys., 94 (1991), 102–137 | DOI | Zbl

[3] Mazhorova O. S., Marchenko M. P., Fryazinov I. V., “Monotoniziruyuschie regulyarizatory i matrichnyi metod resheniya uravnenii Nave–Stoksa dlya neszhimaemoi zhidkosti”, Matematicheskoe modelirovanie, 6:12 (1994), 97–116 | MR | Zbl

[4] Vabischevich P. N., Pavlov A. N., Churbanov A. G., “Metody rascheta nestatsionarnykh neszhimaemykh techenii v estestvennykh peremennykh na neraznesennykh setkakh”, Matematicheskoe modelirovanie, 8:7 (1996), 81–108 | MR | Zbl

[5] Vabischevich P. N., Pavlov A. N., Churbanov A. G., “Chislennye metody resheniya nestatsionarnykh uravnenii Nave–Stoksa v estestvennykh peremennykh na chastichno raznesennykh setkakh”, Matematicheskoe modelirovanie, 9:4 (1997), 85–114 | MR | Zbl

[6] Christov C. I., Marinova R. S., “Implicit vectorial operator splitting for incompressible Navier–Stokes equations in primitive variables”, Computational Technologies, 6:4 (2001), 81–108 | MR

[7] Miloshevich Kh., Rychkov A. D., Shokin Yu. I., Modelirovanie struinykh techenii v staleplavilnykh konverterakh, Izdatelstvo SO RAN, Novosibirsk, 2000, 187 pp.

[8] Betchelor D., Vvedenie v dinamiku zhidkosti, Mir, M., 1973, 760 pp.

[9] Volkov P. K., Pereverzev A. V., “Reshenie regulyarizovannykh uravnenii neszhimaemoi zhidkosti v peremennykh “skorosti–davlenie” metodom konechnykh elementov”, Vychislitelnye tekhnologii, 7:2 (2002), 106–113, IVT SO RAN, Novosibirsk

[10] Volkov P. K., Pereverzev A. V., “Metod konechnykh elementov dlya resheniya kraevykh zadach regulyarizovannykh uravnenii neszhimaemoi zhidkosti v peremennykh “skorosti–davlenie””, Matematicheskoe modelirovanie, 15:3 (2003), 15–28 | Zbl

[11] Segerlind L., Primenenie metoda konechnykh elementov, Mir, M., 1979

[12] Volkov P. K., Pereverzev V. A., “Kachestvennye razlichiya v dinamike izotermicheskikh zhidkostei v zemnykh i kosmicheskikh usloviyakh”, Trudy regionalnogo konkursa nauchnykh proektov v oblasti estestvennykh nauk, 2, Eidos, Kaluga, 2001, 52–70

[13] Kuznetsov B. G., “Ob odnom sposobe approksimatsii uravnenii gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, DAN, 213:1 (1973) | Zbl

[14] Smagulov Sh., “Ob odnom nelineinom uravnenii s malym parametrom, approksimiruyuschem uravnenie Nave–Stoksa”, Trudy V Vsesoyuznogo seminara po chislennym metodam mekhaniki vyazkoi zhidkosti, ch. 1, VTsSO AN SSSR, Novosibirsk, 1975, 123–134 | MR

[15] Temam R., “Une methode d'approximation de Ja Solution des equationsde Navier–Stokes”, Bull. Soc. Mathem. de France, 96 (1968), 115–152 | MR | Zbl

[16] Chorin A. J., “A numerical method for solving incompressible viscous flow problems”, J. of Comput. Phys., 2 (1967), 12–26 | DOI | Zbl

[17] Alexeev B. V., “The generalized Boltzmann equation, generalized hydrodynamic equations and their applications”, Phil. Trans. Roy. Soc. London, A. 349 (1994), 417–443 | MR | Zbl

[18] Fedoseyev A. I., “A regularization approach to solving boundary layer problems for Navier–Stokes equations”, Computational Fluid Dynamics Journal, 9:1 (2000)

[19] Koseff K. R. and Street R. L., “The Lid-Driven cavity flow: A synthesis of qualitative and quantitative observations”, Trans. ASME J. Fluids Engng, 106 (1984), 390–398 | DOI

[20] Ragulin V. V., “K zadache o protekanii vyazkoi zhidkosti skvoz ogranichennuyu oblast pri zadannom perepade davleniya ili napora”, Dinamika sploshnoi sredy, 27, Novosibirsk, 1976, 78–92 | MR

[21] Kuznetsov B. G., Moshkin N. P. Smagulov Sh., “Chislennoe issledovanie techeniya vyazkoi neszhimaemoi zhidkosti v kanalakh pri zadannykh perepadakh davlenii”, Chislennye metody dinamiki vyazkoi zhidkosti, ITPM SO AN SSSR, Novosibirsk, 1983, 203–207

[22] Volkov P. K., Pereverzev A. V., “Trekhmernaya svobodnaya konvektsiya v zapolnennoi vozdukhom kubicheskoi kaverne”, Trudy tretei Rossiiskoi natsionalnoi konferentsii po teploobmenu (21–25 okt., 2002 g.), 3, Izd. MEI, M., 45–48