Development of semi-parametric models of Raleigh--Taylor instability by means of neuronet processing of the results of numerical experiment
Matematičeskoe modelirovanie, Tome 16 (2004) no. 7, pp. 21-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Investigation of turbulent flows, and, in particular, the flows arising due to Raleigh–Taylor instability, is a fundamental hydrodynamic problem. Due to complexity of direct numerical calculation and scantiness of a parametric approach one has to look for new methods for the description of turbulent flows. A principally new approach to studying of the problem is proposed in this work, i.e. the development of a semi-parametric model by means of a neuronet analysis of the experimental (calculation) data. Below we describe a technique for coding the initial physical fields aimed at the creation of neuronet input vectors, present a stable description of Raleigh–Taylor mixing processes, show a possibility in principle to predict the development of turbulent flows.
@article{MM_2004_16_7_a3,
     author = {A. S. Nuzhny and V. B. Rozanov and R. V. Stepanov and S. A. Shumsky},
     title = {Development of semi-parametric models of {Raleigh--Taylor} instability by means of neuronet processing of the results of numerical experiment},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {16},
     number = {7},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_7_a3/}
}
TY  - JOUR
AU  - A. S. Nuzhny
AU  - V. B. Rozanov
AU  - R. V. Stepanov
AU  - S. A. Shumsky
TI  - Development of semi-parametric models of Raleigh--Taylor instability by means of neuronet processing of the results of numerical experiment
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 21
EP  - 30
VL  - 16
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_7_a3/
LA  - ru
ID  - MM_2004_16_7_a3
ER  - 
%0 Journal Article
%A A. S. Nuzhny
%A V. B. Rozanov
%A R. V. Stepanov
%A S. A. Shumsky
%T Development of semi-parametric models of Raleigh--Taylor instability by means of neuronet processing of the results of numerical experiment
%J Matematičeskoe modelirovanie
%D 2004
%P 21-30
%V 16
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_7_a3/
%G ru
%F MM_2004_16_7_a3
A. S. Nuzhny; V. B. Rozanov; R. V. Stepanov; S. A. Shumsky. Development of semi-parametric models of Raleigh--Taylor instability by means of neuronet processing of the results of numerical experiment. Matematičeskoe modelirovanie, Tome 16 (2004) no. 7, pp. 21-30. http://geodesic.mathdoc.fr/item/MM_2004_16_7_a3/

[1] N. J. Zabusky, S. Zeng, J. Ray, R. Samtaney, “Vortical Projectiles from Shock-Bubble Ineractions”, Proc. of 6th International Workshop on The Physics of Compressible Turbulent Mixing (Marseille, 18–21 June, 1997, France), 539 | Zbl

[2] R. L. Holmes et al., J. W. Grove et al., “Single mode Richtmyer–Meshkov Instability: Experiment, Simulation and Theory”, Proc. of 6th International Workshop on the Physics of Compressible Turbulent Mixing (Marseille, 18–21 June, 1997, France), 197

[3] A. L. Ezhov, S. A. Shumskii, Neirokompyuting i ego prilozhenie v ekonomike i biznese, MIFI, M., 1998

[4] S. Chandrasekhar, Hydrodynamic and Hydromagetic Stability, Clarendon Press, Oxford, 1961 | MR | Zbl

[5] V. F. Tishkin, V. V. Nikishin, I. V. Popov, A. P. Favorskii, “Raznostnye skhemy trekhmernoi gazovoi dinamiki dlya resheniya zadachi o neustoichivosti Rikhtmaiera–Meshkova”, Matematicheskoe Modelirovanie, 7:5 (1995), 15 | Zbl

[6] I. Daubechies, “Ten lecture on Wavelets”, CBMS-NSF Regional Conf., Series in Appl. Math., 61, Society for Industrial and Applied Mathemedics, Philadelphia, 1992 | MR | Zbl

[7] T. Kohonen, “Self-Organized formation of topologically correct feature maps”, Biol. Cybernetics, 43 (1982), 56–69 | DOI | MR