Numerical modeling of the boundary layer in elastoviscoplastic solids
Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 93-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classical model of elastoplastic flow is inconsistent for boundary problems – solution does not exist, when tangential component of loading (stress or velocity) is larger then yield stress. The elastoviscoplastic model generalize elastoplastic model and is the simplest model for which this boundary problem has the solution. In this paper the skew impact of the semispace is considered. The elastoviscoplastic flow theory with yield condition depended on first and second invariants of stress tensor is considered. The theory allows to describe damage of metals, porouse and granular materials, soils, ceramics etc. For the velocity, which exceeds the critical value the boundary effect is appeared, the plastic strain localization occurs. It is shown that presence of the first invariant qualitatively changes the character of boundary layer and strain localization effect.
@article{MM_2004_16_6_a21,
     author = {V. N. Kukudzhanov and A. L. Levitin},
     title = {Numerical modeling of the boundary layer in elastoviscoplastic solids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {93--96},
     publisher = {mathdoc},
     volume = {16},
     number = {6},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_6_a21/}
}
TY  - JOUR
AU  - V. N. Kukudzhanov
AU  - A. L. Levitin
TI  - Numerical modeling of the boundary layer in elastoviscoplastic solids
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 93
EP  - 96
VL  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_6_a21/
LA  - ru
ID  - MM_2004_16_6_a21
ER  - 
%0 Journal Article
%A V. N. Kukudzhanov
%A A. L. Levitin
%T Numerical modeling of the boundary layer in elastoviscoplastic solids
%J Matematičeskoe modelirovanie
%D 2004
%P 93-96
%V 16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_6_a21/
%G ru
%F MM_2004_16_6_a21
V. N. Kukudzhanov; A. L. Levitin. Numerical modeling of the boundary layer in elastoviscoplastic solids. Matematičeskoe modelirovanie, Tome 16 (2004) no. 6, pp. 93-96. http://geodesic.mathdoc.fr/item/MM_2004_16_6_a21/

[1] Novatskii V. K., Volnovye zadachi teorii plastichnosti, Mir, M., 1978, 307 pp.

[2] Kukudzhanov V. N., “Rasprostranenie voln v uprugovyazkoplasticheskikh materialakh s diagrammoi obschego vida”, Izv. RAN. MTT, 2001, no. 5, 96–111

[3] Kukudzhanov V. N., “Surface shear strain localization and damage of elastoviscoplastic material in wave propagation problems”, Plasticity and impact Mechanics, Proc. 8th Intern. Symp. IMPLAST 2003, ed. N. K. Gupta, Phoenix Publ. House, New Delhi, 2003, 777–786

[4] K. J. Frutschy and R. J. Clifton, “High-temperature Pressure-shear Plate Impact Experiments Using Pure Tungsten Carbide Impactors”, Experimental Mechanics, 38 (1998), 116–125 | DOI

[5] A. S. Bonnet-Lebouvier, J. R. Klepaczko., “Numerical study of shear deformation in $Ti-6Al-4V$ at medium and high strain rates, critical impact velocity in shear”, International Journal of Impact Engineering, 27:7 (2002), 755–769 | DOI

[6] Kukudzhanov V. N., Levitin A. L., “O dinamicheskom kraevom effekte pri prodolno-poperechnom udare po uprugovyazkoplasticheskomu poluprostranstvu”, Izv. RAN, MTT, 2003, no. 4, 198–214

[7] Freidental A., Geiringer X., Matematicheskie teorii neuprugoi sploshnoi sredy, Fizmatlit, M., 1962, 432 pp.