Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_5_a8, author = {V. P. Zagonov and M. E. Zhukovskii and S. V. Podolyako and M. V. Skachkov and G.-R. Tillack and C. Bellon}, title = {Boundary description approach application for modeling the x-rays transformation in the computational diagnostics problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {103--116}, publisher = {mathdoc}, volume = {16}, number = {5}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_5_a8/} }
TY - JOUR AU - V. P. Zagonov AU - M. E. Zhukovskii AU - S. V. Podolyako AU - M. V. Skachkov AU - G.-R. Tillack AU - C. Bellon TI - Boundary description approach application for modeling the x-rays transformation in the computational diagnostics problems JO - Matematičeskoe modelirovanie PY - 2004 SP - 103 EP - 116 VL - 16 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2004_16_5_a8/ LA - ru ID - MM_2004_16_5_a8 ER -
%0 Journal Article %A V. P. Zagonov %A M. E. Zhukovskii %A S. V. Podolyako %A M. V. Skachkov %A G.-R. Tillack %A C. Bellon %T Boundary description approach application for modeling the x-rays transformation in the computational diagnostics problems %J Matematičeskoe modelirovanie %D 2004 %P 103-116 %V 16 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2004_16_5_a8/ %G ru %F MM_2004_16_5_a8
V. P. Zagonov; M. E. Zhukovskii; S. V. Podolyako; M. V. Skachkov; G.-R. Tillack; C. Bellon. Boundary description approach application for modeling the x-rays transformation in the computational diagnostics problems. Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 103-116. http://geodesic.mathdoc.fr/item/MM_2004_16_5_a8/
[1] Proceedings of the 2nd International Conference on Computer Methods and Inverse Problems in Nondestructive Testing and Diagnostics, DGZfP Berichtsband 64, Minsk, Belarus, 1998
[2] F. Naterer, Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR
[3] V. L. Vengrinovich, Y. B. Denkevich, G.-R. Tillack and C. Nockemann, “Multistep $3D$ X-Ray Tomography a Limited Number of Projections and Views”, Review of Progress in QNDE, 16, eds. D. Tompson and D. Chimenti, Plenum Press, N.Y., 1997, 317–323
[4] Jiadong Xu, R. M. Wallingford, T. Jensen and J. Gray, “Recent developments in the X-Ray Radiography Simulation Code: XRSIM”, Review of Progress in Quantitative Nondestructive Evaluation, 13, eds. D. O. Thompson and D. E. Chimenti, Plenum Press, 1994, 557–562
[5] “Gliere: Sindbad: From CAD Model to Synthetic Radiographs”, Review of Progress in Quantitative Nondestructive Evaluation, 14, eds. D. O. Thompson and D. E. Chimenti, Plenum Press, 1995, 353–359
[6] Bellon, G.-R. Tillack, C. Nockemann and L. Stenzel, “Computer Simulation of X-Ray NDE Process Coupled With CAD Interface”, Review of Progress in Quantitative Nondestructive Evaluation, 16, eds. D. O. Thompson and D. E. Chimenti, Plenum Press, 1997, 325–330
[7] V. P. Zagonov and S. V. Podolyako, On a boundary description approach in NDE problems, Preprint No 3, Keldysh Institute for Applied Mathematics of Russian Academy of Sciences, 2000
[8] V. P. Zagonov, S. V. Podolyako, G.-R. Tillack, C. Bellon, Fast 3D ray tracer algorithm for cone beam radiography, 3-ya mezhdunarodnaya konferentsiya “Kompyuternye metody i obratnye zadachi v nerazrushayuschem kontrole i diagnostike”, Moskva, 2002, 102 pp.
[9] J. Encarna and W. Strafier, Computer Graphics, Oldenburg Verlag, Munchen, 1986
[10] C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988 | MR
[11] G.-R. Tillack, V. M. Artemiev and A. O. Naumov, “Transport Equations for Photon Flow Exploiting the Theory of Markov Processes with Random Structure Part 1: Derivation of Basic Equations”, Journal of Nondestructive Evaluation, 20:4 (2001), 153–161 | DOI
[12] U. Fano, L. Spenser, M. Berger, Perenos gamma-izlucheniya, Gosatomizdat, Moskva, 1963
[13] G. Marsaglia and A. Zaman, “A new class of random number generators”, Annals of Applied Probability, 1991, 462–480 | DOI | MR | Zbl
[14] K. M. Sobol, Yu. L. Levitan, Poluchenie tochek, ravnomerno raspolozhennykh v mnogomernom kube, Preprint 40, IPM im. M. V. Keldysha RAN, 1976
[15] K. A. Antonov, V. M. Saleev, “Ekonomichnyi sposob vychisleniya LP$_\tau$-posledovatelnostei”, ZhVM i MF, 19:1 (1979), 243–245 | MR | Zbl