Boundary description approach application for modeling the x-rays transformation in the computational diagnostics problems
Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 103-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper an approach is suggested to evaluate the transformation of ionizing radiation in multicomponent objects. Corresponding numerical algorithms are constructed to simulate the radiation transport in objects of complex geometry and inner structure. This approach is based on a special object description by using closed envelopes separating homogeneous parts of the object. The developed algorithm considers significant prior information about the inner structure of the objects such as piecewise homogeneity of material properties. The separating surfaces are assumed to be sharp boundaries, which excludes the blurring effect. The proposed method of object description provides the possibility of efficient application of the Monte Carlo method for simulating the scattering and absorption of photons in materials including implementation for modern multi-processor systems. The main features of the method for mathematical simulation of the x-radiation transformation in piecewise homogeneous structures are presented in the paper.
@article{MM_2004_16_5_a8,
     author = {V. P. Zagonov and M. E. Zhukovskii and S. V. Podolyako and M. V. Skachkov and G.-R. Tillack and C. Bellon},
     title = {Boundary description approach application for modeling the x-rays transformation in the computational diagnostics problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--116},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_5_a8/}
}
TY  - JOUR
AU  - V. P. Zagonov
AU  - M. E. Zhukovskii
AU  - S. V. Podolyako
AU  - M. V. Skachkov
AU  - G.-R. Tillack
AU  - C. Bellon
TI  - Boundary description approach application for modeling the x-rays transformation in the computational diagnostics problems
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 103
EP  - 116
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_5_a8/
LA  - ru
ID  - MM_2004_16_5_a8
ER  - 
%0 Journal Article
%A V. P. Zagonov
%A M. E. Zhukovskii
%A S. V. Podolyako
%A M. V. Skachkov
%A G.-R. Tillack
%A C. Bellon
%T Boundary description approach application for modeling the x-rays transformation in the computational diagnostics problems
%J Matematičeskoe modelirovanie
%D 2004
%P 103-116
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_5_a8/
%G ru
%F MM_2004_16_5_a8
V. P. Zagonov; M. E. Zhukovskii; S. V. Podolyako; M. V. Skachkov; G.-R. Tillack; C. Bellon. Boundary description approach application for modeling the x-rays transformation in the computational diagnostics problems. Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 103-116. http://geodesic.mathdoc.fr/item/MM_2004_16_5_a8/

[1] Proceedings of the 2nd International Conference on Computer Methods and Inverse Problems in Nondestructive Testing and Diagnostics, DGZfP Berichtsband 64, Minsk, Belarus, 1998

[2] F. Naterer, Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR

[3] V. L. Vengrinovich, Y. B. Denkevich, G.-R. Tillack and C. Nockemann, “Multistep $3D$ X-Ray Tomography a Limited Number of Projections and Views”, Review of Progress in QNDE, 16, eds. D. Tompson and D. Chimenti, Plenum Press, N.Y., 1997, 317–323

[4] Jiadong Xu, R. M. Wallingford, T. Jensen and J. Gray, “Recent developments in the X-Ray Radiography Simulation Code: XRSIM”, Review of Progress in Quantitative Nondestructive Evaluation, 13, eds. D. O. Thompson and D. E. Chimenti, Plenum Press, 1994, 557–562

[5] “Gliere: Sindbad: From CAD Model to Synthetic Radiographs”, Review of Progress in Quantitative Nondestructive Evaluation, 14, eds. D. O. Thompson and D. E. Chimenti, Plenum Press, 1995, 353–359

[6] Bellon, G.-R. Tillack, C. Nockemann and L. Stenzel, “Computer Simulation of X-Ray NDE Process Coupled With CAD Interface”, Review of Progress in Quantitative Nondestructive Evaluation, 16, eds. D. O. Thompson and D. E. Chimenti, Plenum Press, 1997, 325–330

[7] V. P. Zagonov and S. V. Podolyako, On a boundary description approach in NDE problems, Preprint No 3, Keldysh Institute for Applied Mathematics of Russian Academy of Sciences, 2000

[8] V. P. Zagonov, S. V. Podolyako, G.-R. Tillack, C. Bellon, Fast 3D ray tracer algorithm for cone beam radiography, 3-ya mezhdunarodnaya konferentsiya “Kompyuternye metody i obratnye zadachi v nerazrushayuschem kontrole i diagnostike”, Moskva, 2002, 102 pp.

[9] J. Encarna and W. Strafier, Computer Graphics, Oldenburg Verlag, Munchen, 1986

[10] C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988 | MR

[11] G.-R. Tillack, V. M. Artemiev and A. O. Naumov, “Transport Equations for Photon Flow Exploiting the Theory of Markov Processes with Random Structure Part 1: Derivation of Basic Equations”, Journal of Nondestructive Evaluation, 20:4 (2001), 153–161 | DOI

[12] U. Fano, L. Spenser, M. Berger, Perenos gamma-izlucheniya, Gosatomizdat, Moskva, 1963

[13] G. Marsaglia and A. Zaman, “A new class of random number generators”, Annals of Applied Probability, 1991, 462–480 | DOI | MR | Zbl

[14] K. M. Sobol, Yu. L. Levitan, Poluchenie tochek, ravnomerno raspolozhennykh v mnogomernom kube, Preprint 40, IPM im. M. V. Keldysha RAN, 1976

[15] K. A. Antonov, V. M. Saleev, “Ekonomichnyi sposob vychisleniya LP$_\tau$-posledovatelnostei”, ZhVM i MF, 19:1 (1979), 243–245 | MR | Zbl