The choice of the weight coefficients for the least-squares gradient approximation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 83-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the least-squares gradient approximation on two-dimensional unstructured grids with “bad” cells. We discuss how the accuracy of the least-squares approximation depends on the cell geometry. We analyze a simple geometry and demonstrate that introducing weight coefficients into the problem may help to essentially improve the accuracy of the least-squares approximation. Based on the results of our analysis, a heuristic choice of the weights in a general least-squares procedure is suggested. Our approach is illustrated by numerical tests.
@article{MM_2004_16_5_a6,
     author = {N. B. Petrovskaya},
     title = {The choice of the weight coefficients for the least-squares gradient approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--93},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_5_a6/}
}
TY  - JOUR
AU  - N. B. Petrovskaya
TI  - The choice of the weight coefficients for the least-squares gradient approximation
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 83
EP  - 93
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_5_a6/
LA  - ru
ID  - MM_2004_16_5_a6
ER  - 
%0 Journal Article
%A N. B. Petrovskaya
%T The choice of the weight coefficients for the least-squares gradient approximation
%J Matematičeskoe modelirovanie
%D 2004
%P 83-93
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_5_a6/
%G ru
%F MM_2004_16_5_a6
N. B. Petrovskaya. The choice of the weight coefficients for the least-squares gradient approximation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 83-93. http://geodesic.mathdoc.fr/item/MM_2004_16_5_a6/

[1] A. N. Gilmanov, Metody adaptivnykh setok v zadachakh gazovoi dinamiki, Nauka, M., 2000, 240 pp. | MR

[2] A. S. Lebedev, V. D. Liseikin, G. S. Khakimzyanov, “Razrabotka metodov postroeniya adaptivnykh setok”, Vychislitelnye Tekhnologii, 7:3 (2002), 29–43 | MR | Zbl

[3] I. G. Pushkina, V. F. Tishkin, “Adaptivnye raschetnye setki iz yacheek Dirikhle dlya resheniya zadach matematicheskoi fiziki: metodika postroeniya, primery”, Matematicheskoe modelirovanie, 12:3 (2000), 75–97 | MR

[4] G. F. Carey, Computational Grids: Generation, Adaptation, and Solution Strategies, Taylor Francis, 1997, 496 pp. | MR | Zbl

[5] M. B. Bieterman, J. E. Bussoletti, C. L. Hilmes, F. T. Johnson, R. G. Melvin and D. P. Young, “An Adaptive Grid Method for Analysis of $3D$ Aircraft Configurations”, Computer Methods in Applied Mechanics and Engineering, 101 (1992), 225–249 | DOI | Zbl

[6] Ch. Hirsch, Numerical computation of internal and external flows, John Wiley Son, Ltd, 1990, 714 pp. | Zbl

[7] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978, 272 pp. | MR

[8] V. E. Gmurman, Teoriya veroyatnostei i matematicheskaya statistika, Vysshaya Shkola, M., 2001, 479 pp.

[9] D. J. Mavriplis, Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes, AIAA paper No 3986, 2004