Numerical simulation of soliton solutions of simples discrete equations and their continual limits
Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 66-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sequence of discrete equations with the Bogoyavlensky's integral kinetic equation and KdV equation in their continual limits is considered. The general algorithm of their solutions is investigated. Integration by time is provided by the Runge–Kutta fourth-order method, integral and differential terms are calculated with the help of Fourier transformation. Soli ton solutions for the unsteady discrete equations are found, their individual properties are determinated. Features of the typical solitons interaction are described. One- and two- soliton solutions of the Bogoyavlensky's integral kinetic equation are found.
@article{MM_2004_16_5_a5,
     author = {Yu. V. Bibik and S. P. Popov},
     title = {Numerical simulation of soliton solutions of simples discrete equations and their continual limits},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {66--82},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_5_a5/}
}
TY  - JOUR
AU  - Yu. V. Bibik
AU  - S. P. Popov
TI  - Numerical simulation of soliton solutions of simples discrete equations and their continual limits
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 66
EP  - 82
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_5_a5/
LA  - ru
ID  - MM_2004_16_5_a5
ER  - 
%0 Journal Article
%A Yu. V. Bibik
%A S. P. Popov
%T Numerical simulation of soliton solutions of simples discrete equations and their continual limits
%J Matematičeskoe modelirovanie
%D 2004
%P 66-82
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_5_a5/
%G ru
%F MM_2004_16_5_a5
Yu. V. Bibik; S. P. Popov. Numerical simulation of soliton solutions of simples discrete equations and their continual limits. Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 66-82. http://geodesic.mathdoc.fr/item/MM_2004_16_5_a5/

[1] Faddeev L. D.,Takhtadeyuyap L. A., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[2] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[3] Bogoyavlenskii O. I., Oprokidyvayuschiesya solitony, Nauka, M., 1991 | MR | Zbl

[4] Bibik Yu. V., Zhuk V. I., Popov S. P., “Osnovnye zakonomernosti vzaimodeistviya dvumernykh gidrodinasmicheskikh solitonov”, Soobscheniya po prikladnoi matematike, VTs RAN, M., 2001

[5] Shrira V. I., “O “pripoverkhnostnykh volnakh” verkhnego kvaziodnorodnogo sloya okeana”, Dokl. AN SSSR, 308:3 (1989), 732–736

[6] Popov S. P., “Osobennosti chislennogo modelirovaniya dvukhsolitonnykh reshenii uravneniya Zakharova–Kuznetsova”, Zh. vychisl. matem. i matem. fiz., 39:10 (1999), 1749–1757 | MR | Zbl

[7] Petviashvili V. I., Pokhotelov O. A., Uedinennye volny v plazme i atmosfere, Energoatomizdat, M., 1989