Through marching method of calculation of transonic viscous flows
Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 3-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stationary problems of transonic gas dynamics – direct problem of Laval nozzle and problem of a supersonic flow over the smooth blunt-shaped body – are considered within the framework of elliptichyperbolic simplification of the Navier–Stokes equations. For the solution of these problems the fast converging iterative algorithm based on splitting, offered earlier by the author, of a gradient of pressure in a main direction of flow into “hyperbolic” and “elliptic” components is advanced. Last component in the beginning of each iteration of algorithm is fixed, and in the end – is specified. Thus the type of system of the governing equations becomes hyperbolic-parabolic. For the given system of the equations the correct mathematical problem for a finding of the unique solution describing smooth, subsonic and supersonic mixed flow or in a nozzle or in a shock layer about a blunt-shaped body is formulated. The high-resolution space-marching method allowing to carry out integration of this system of the equations through all area of flow including its transonic part is developed. Thus the difference scheme, approximating system of the differential equations, is completely implicit, uniform scheme. The effective computing condition, permitting fast to find critical values of governing parameters of the specified mixed flows is offered.
@article{MM_2004_16_5_a0,
     author = {B. V. Rogov},
     title = {Through marching method of calculation of transonic viscous flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {16},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_5_a0/}
}
TY  - JOUR
AU  - B. V. Rogov
TI  - Through marching method of calculation of transonic viscous flows
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 3
EP  - 22
VL  - 16
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_5_a0/
LA  - ru
ID  - MM_2004_16_5_a0
ER  - 
%0 Journal Article
%A B. V. Rogov
%T Through marching method of calculation of transonic viscous flows
%J Matematičeskoe modelirovanie
%D 2004
%P 3-22
%V 16
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_5_a0/
%G ru
%F MM_2004_16_5_a0
B. V. Rogov. Through marching method of calculation of transonic viscous flows. Matematičeskoe modelirovanie, Tome 16 (2004) no. 5, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2004_16_5_a0/

[1] G. A. Tirskii, S. V. Utyuzhnikov, “Sovremennye gazodinamicheskie modeli vneshnikh i vnutrennikh zadach sverkh- i giperzvukovoi aerodinamiki”, Modelirovanie v mekhanike, 7:2 (1993), 5–28 | MR

[2] Yu. P. Golovachev, Chislennoe modelirovanie techenii vyazkogo gaza v udarnom sloe, Nauka, Fizmatlit, M., 1996, 376 pp. | Zbl

[3] B. V. Rogov, I. A. Sokolova, “Uproschennye uravneniya Nave–Stoksa dlya vnutrennikh smeshannykh techenii i chislennyi metod ikh resheniya”, Izv. RAN. Mekh. zhidk. i gaza, 2001, no. 3, 61–70 | MR | Zbl

[4] B. V. Rogov, I. A. Sokolova, “Giperbolicheskoe priblizhenie uravnenii Nave-Stoksa dlya vyazkikh smeshannykh techenii”, Izv. RAN. Mekh. zhidk. i gaza, 2002, no. 3, 30–49 | MR | Zbl

[5] B. V. Rogov, I. A. Sokolova, “Obzor modelei vyazkikh vnutrennikh techenii”, Matematicheskoe modelirovanie, 14:1 (2002), 41–72 | MR | Zbl

[6] N. N. Kalitkin, B. V. Rogov, I. A. Sokolova, “Effektivnyi metod rascheta vyazkikh techenii so znachitelnym iskrivleniem linii toka”, Doklady Akademii Nauk, 374:2 (2000), 190–193

[7] B. V. Rogov, I. A. Sokolova, “Marshevyi raschet udarnoi volny pri nevyazkom sverkhzvukovom obtekanii zatuplennykh tel”, Matematicheskoe modelirovanie, 13:5 (2001), 110–118 | MR | Zbl

[8] B. V. Rogov, I. A. Sokolova, “Uravneniya vyazkikh techenii v gladkikh kanalakh peremennogo secheniya”, Doklady Akademii Nauk, 345:5 (1995), 615–618 | Zbl

[9] M. Van-Daik, “Teoriya szhimaemogo pogranichnogo sloya vo vtorom priblizhenii s primeneniem k obtekaniyu zatuplennykh tel giperzvukovym potokom”, Issledovanie giperzvukovykh techenii, Mir, M., 1964, 35–58

[10] G. Yu. Stepanov, L. V. Gogish, Kvaziodnomernaya gazodinamika sopel raketnykh dvigatelei, Mashinostroenie, M., 1973, 168 pp.

[11] U. G. Pirumov, G. S. Roslyakov, Techeniya gaza v soplakh, MGU, M., 1978, 351 pp.

[12] R. T. Davis, “Numerical solution of the hypersonic viscous shock-layer equations”, AIAA Journal, 8:5 (1970), 843–851 | DOI | Zbl

[13] Chislennoe issledovanie sovremennykh zadach gazovoi dinamiki, ed. O. M. Belotserkovskii, Nauka, M., 1974, 397 pp.

[14] V. G. Gromov, V. I. Sakharov, E. I. Fateeva, “Chislennoe issledovanie giperzvukovogo obtekaniya zatuplennykh tel vyazkim khimicheski reagiruyuschim gazom”, Izv. RAN. Mekh. zhidk. i gaza, 1999, no. 5, 177–186 | Zbl

[15] S. L. Vasilevskii, G. A. Tirskii, S. V. Utyuzhnikov, “Chislennyi metod resheniya uravnenii vyazkogo udarnogo sloya”, Zh. vychisl. matematiki i mat. fiziki, 27:5 (1987), 741–750

[16] B. V. Rogov, B. V. Sokolova, “Giperbolicheskaya model vyazkikh smeshannykh techenii”, DAN, 378:5 (2001), 628 | MR

[17] V. M. Kovenya, N. N. Yanenko, Metod rasschepleniya v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981, 301 pp. | MR | Zbl

[18] D. Anderson, Dzh. Tannekhill, R. Pletcher, Vychislitelnaya gidromekhanika i teploobmen, t. 1, Mir, M., 1990, 384 pp. ; т. 2, 726 с. | MR | Zbl

[19] L. G. Loitsyanskii, Mekhanika zhidkosti i gaza, Izd. 5-e., Nauka, 1978, 736 pp. | MR

[20] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978, 512 pp. | MR

[21] B. V. Rogov, “Metod minimalnoi dliny dlya techenii s transzvukovoi bifurkatsiei”, Doklady Akademii Nauk, 381:1 (2001), 23–26 | MR | Zbl

[22] B. V. Rogov, “Metod minimalnoi dliny dlya nakhozhdeniya kriticheskikh parametrov smeshannykh techenii”, Matematicheskoe modelirovanie, 14:1 (2002), 87–96 | MR | Zbl

[23] N. N. Kalitkin, B. V. Rogov, I. A. Sokolova, “Dvukhstadiinyi marshevyi metod rascheta vyazkikh techenii cherez soplo Lavalya”, Mat. modelirovanie, 11:7 (1999), 95–117