Oscillatory processes of bioelectrical activity in the cerebral cortex
Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 55-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The interaction between excitatory and inhibitory populations of neocortical neurons, taking into account the well-known nervous cells properties (the absolute and relative refractory periods, the postsynaptic potential amplitude dependence of the membrane potential) is considered. Steady states and the stability region of oscillations of average membrane potential of excitatory neurons, as is well known be accountable for electroencephalogram, are studied upon varying the average afferent input under the assumption that the cell threshold distribution is the normal distribution. It is shown that there is a parameter range in the stability region where an increase of the average discrete Gaussian white-noise of nonspecific afferent input enhances the oscillation frequency down to domination of the determined rhythm followed by its attenuation and spectral spreading upon further increase of the input. The human and animal's electroencephalograms in different functional states were numerically simulated. The real form of a power spectrum of electroencephalogram was obtained. The occurrence of the non-regular spindle-shaped activity expanding frequency of the basic oscillation and widening spectral peak was revealed. The existence of a limiting cycle and possibility of arising of pathological activity observed at abnormal brain functioning were shown with the help of the numerical nonlinear analysis in the unsteady region.
@article{MM_2004_16_4_a6,
     author = {B. V. Bakharev},
     title = {Oscillatory processes of bioelectrical activity in the cerebral cortex},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_4_a6/}
}
TY  - JOUR
AU  - B. V. Bakharev
TI  - Oscillatory processes of bioelectrical activity in the cerebral cortex
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 55
EP  - 66
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_4_a6/
LA  - ru
ID  - MM_2004_16_4_a6
ER  - 
%0 Journal Article
%A B. V. Bakharev
%T Oscillatory processes of bioelectrical activity in the cerebral cortex
%J Matematičeskoe modelirovanie
%D 2004
%P 55-66
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_4_a6/
%G ru
%F MM_2004_16_4_a6
B. V. Bakharev. Oscillatory processes of bioelectrical activity in the cerebral cortex. Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 55-66. http://geodesic.mathdoc.fr/item/MM_2004_16_4_a6/

[1] D. P. Purpura, T. L. Frigyest, I. J. McMurtry, T. Scarff, “Synaptic mechanisms in thalamic regulation of cerebellocortical projection activity”, The Thalamus, eds. D. P. Purpura and M. D. Yahr, Columbia University Press, New-York, 1966, 153–170

[2] H. R. Wilson, J. D. Cowan, “Excitatory and inhibitory interactions in localized population of model neurons”, Biophys. J., 12:1 (1972), 1–24 | DOI

[3] L. H. Zetterberg, “Stochastic activity in a population of neurons”, A system analysis approach, Report Inct. Med. Physics, TNO, Utrecht, 1973, 1–153

[4] F. H. Lopes da Silva, A. Hoeks, H. Smits, L. H. Zetterberg, “Model of brain rhythmic activity, the alpha-rhythm of the thalamus”, Kybernetik, 15 (1974), 27–37 | DOI | MR

[5] F. H. Lopes da Silva, A. van Rotterdam, P. Barts, E. van Heusden, W. Burr, Model of Neuronal Populations: The Basic Mechanisms of Rhythmicity, Progress in Brain Researh, 45, Elsevier, Amsterdam, 1976

[6] A. van Rotterdam, F. H. Lopes da Silva, J. van den Ende, M. A. Viergever, A. J. Hermans, “A model of the spatiotemporal characteristics of the alpha rhythm”, Bull. Math. Biol., 44 (1982), 283–305 | MR | Zbl

[7] M. N. Zhadin, Teoriya ritmicheskikh protsessov v kore golovnogo mozga, preprint, Puschino, 1982, 37 pp.

[8] M. N. Zhadin, “Formirovanie ritmicheskikh protsessov v bioelektricheskoi aktivnosti kory golovnogo mozga”, Biofizika, 39:1 (1994), 129–147

[9] A. M. Uttley, “The probability of neural connections”, Proc. Roy. Soc. ser. B. Biol. Sci., 142 (1956), 229–241

[10] D. T. J. Liley, J. J. Wright, “Intracortical connectivity of pyramidal and stellate cells: estimates of synaptic densities and coupling symmetry”, Network, 5 (1994), 175–189 | DOI | Zbl

[11] J. J. Wright, D. T. J. Liley, “A millimetric-scale simulation of electrical wave dinamics based on anatomical estimates of cortical synaptic density”, Network, 5 (1994), 191–202 | DOI | Zbl

[12] J. J. Wright, D. T. J. Liley, “Simulation of electrocirtical waves”, Biological Cybernetics, 72 (1995), 347–356 | DOI | Zbl

[13] P. A. Robinson, C. J. Rennie, J. J. Wright, “Propagation and stability of waves of electrical activity in the Cerebral cortex”, Phys. Rev. E, 56 (1997), 826–840 | DOI

[14] B. V. Bakharev, M. N. Zhadin, “Vliyanie tormozno-tormoznykh svyazei i formy postsinapticheskikh potentsialov na formirovanie ritmicheskikh protsessov v kore golovnogo mozga: analiz priblizhennogo uravneniya elektroentsefalogrammy”, Biofizika, 42:1 (1997), 214–222

[15] B. V. Bakharev, M. N. Zhadin, “Ritmicheskie protsessy v bioelektricheskoi aktivnosti kory golovnogo mozga pri reaktsii aktivatsii: kachestvennyi nelineinyi analiz s uchetom refrakternosti”, Biofizika, 46:4 (2001), 715–723

[16] Ya. Sentagotai, M. Arbib, Kontseptualnye modeli nervnoi sistemy, Mir, M., 1976, 198 pp.

[17] V. Mauntkasl, “Organizuyuschii printsip funktsii mozga: Elementarnyi modul i raspredelennaya sistema”, Razumnyi mozg, eds. D. Edel'man, V. Mauntkasl, Mir, M., 1981, 15–67

[18] M. N. Zhadin, “Mekhanizmy sinkhronizatsii potentsialov kory golovnogo mozga. 2. Model zavisimykh istochnikov”, Biofizika, 14:5 (1969), 897–902

[19] D. A. Winfield, K. C. Gaffer, T. S. Powell, “An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual area of the cat rat”, Brain Res., 103:2 (1980), 243–258

[20] F. N. Serkov, “Sovremennoe sostoyanie problemy korkovogo tormozheniya”, Fiziologicheskii zhurn., 35:6 (1989), 101–110, Naukova dumka, Kiev

[21] V. Braitenberg, A. Schutz, Anatomy of the Cortex: Statistics and Geometry, Springer-Verlag, Berlin, 1991

[22] A. S. Batuev, Neirofiziologiya kory golovnogo mozga. (Modulnyi printsip organizatsii), Izd-voLGU, L., 1984, 214 pp.

[23] D. A. Sholl, The organisation of the cerebral cortex, John Wiley Inc., New York, 1956, 125 pp.

[24] M. N. Zhadin, B. V. Bakharev, L. P. Yakupova, “Krosskorrelyatsionnyi analiz fonovoi aktivnosti raznoudalennykh kletok zritelnoi kory u bodrstvuyuschego krolika”, ZhVND, 36:3 (1986), 529–537

[25] J. S. Coombs, J. C. Eccles, P. Fatt, “Excitatory synaptic action in motoneurones”, J. Physiol. (Lond.), 130 (1955), 374–395

[26] C. Stefanis, H. Jasper, “Intracellular microelectrode studies of antidrome responses in cortical pyramidal tract neurons”, J. Neurophysiol., 27:5 (1964), 828–854

[27] Dzh. Ekkls, Tormoznye puti tsentralnoi nervnoi sistemy, Mir, M., 1971, 166 pp.

[28] L. P. Renaud, J. S. Kelly, L. Provini, “Synaptic inhibition in pyramidal tract neurons; membrane potential and conductance changes evoked by pyramidal tract and cortical surface stimulation”, J. Neurophysiol., 37:6 (1974), 1144–1155

[29] R. A. Deisz, G. Fortin, W. Zieglgansberger, “Voltage dependence of excitatory postsynaptic potentials of rat neocortical neurons”, J. Neurophysiol., 65:2 (1991), 371–382

[30] J. S. Nettleton, W. J. Spain, “Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons”, J. Neurophysiol., 83:6 (2000), 3310–3322

[31] F. N. Serkov, Korkovoe tormozhenie, Nauk. dumka, Kiev, 1986, 247 pp. | Zbl

[32] B. E. Alger, R. A. Nicoll, “Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro”, J. Physiol., 328 (1982), 125–141

[33] N. G. Bowery, D. R. Hill, A. L. Hundson, “Characteristics of GABAB receptor binding site on rat whole brain synaptic membranes”, Brit. J. Pharmacol., 78:2 (1983), 191–206

[34] D. T. J. Liley, D. M. Alexander, J. J. Wright, M. D. Aldous, “Alpha rhythm emerges from large-scale networks of realistically coupled multicompartmental model cortical neurons”, Network, 10:1 (1999), 79–92 | DOI | Zbl

[35] W. J. Freeman, “Predictions on neocortical dynamics derived from studies in paleocortex”, Induced Rythms of the Brain, eds. Basar E., Bullock T. H., Basel, Birkhäuser, 1991, 200–232

[36] V. L. Dunin-Barkovskii, Informatsionnye protsessy v neironnykh strukturakh, Nauka, M., 1978, 166 pp.

[37] M. N. Zhadin, B. V. Bakharev, L. I. Muraveva, “Elektrofiziologicheskie korrelyaty privykaniya i vyrabotki uslovnogo refleksa”, ZhVND, 27:6 (1977), 1173–1178

[38] N. A. Vorobev, V. D. Pavlik, B. V. Bakharev, M. N. Zhadin, “Zavisimost spektra elektricheskoi aktivnosti neokorteksa i gippokampa u krolikov ot intensivnosti stimulyatsii retikulyarnoi formatsii srednego mozga”, ZhVND, 38:2 (1988), 313–322 | MR

[39] O'Kusky J., Colonnier M., “A laminar analysis of the number of neurons, glia and synapses in visual cortex (area 17) of the adult macaque monkey”, J. Comp. Neurol., 210 (1982), 278–290 | DOI

[40] B. G. Cragg, “The density of synapses and neurons in normal, mentally defective and aging human brains”, Brain, 98 (1975), 81–90 | DOI

[41] A. T. Bondar, A. I. Fedotchev, “Esche raz o tonkoi strukture alfa-ritma EEG cheloveka: dva spektralnykh komponenta v sostoyanii pokoya”, Fiziologiya cheloveka, 27:4 (2001), 15–22 | MR

[42] B. V. Bakharev, M. N. Zhadin, “Vliyanie potentsialzavisimosti amplitudy postsinapticheskikh potentsialov na ritmicheskie protsessy bioelektricheskoi aktivnosti kory golovnogo mozga”, Biofizika, 48 (2003) (to appear)