Pattern formation caused by convective flows coming from the opposite directions
Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 41-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that convective flows of the inhibitor variable coming from the opposite directions may cause violation of stability of the spatially uniform state. The conditions of the reaction-convection-diffusion instability are obtained which are the generalization of the Turing instability conditions for a reaction-diffusion system. These analytic results were confirmed by numeric simulations on the example of the Brusselator model.
@article{MM_2004_16_4_a4,
     author = {A. A. Polezhaev},
     title = {Pattern formation caused by convective flows coming from the opposite directions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {41--46},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_4_a4/}
}
TY  - JOUR
AU  - A. A. Polezhaev
TI  - Pattern formation caused by convective flows coming from the opposite directions
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 41
EP  - 46
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_4_a4/
LA  - ru
ID  - MM_2004_16_4_a4
ER  - 
%0 Journal Article
%A A. A. Polezhaev
%T Pattern formation caused by convective flows coming from the opposite directions
%J Matematičeskoe modelirovanie
%D 2004
%P 41-46
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_4_a4/
%G ru
%F MM_2004_16_4_a4
A. A. Polezhaev. Pattern formation caused by convective flows coming from the opposite directions. Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 41-46. http://geodesic.mathdoc.fr/item/MM_2004_16_4_a4/

[1] Murray J. D., Mathematical biology, Springer-Verlag, Berlin, 1989, 760 pp. | MR

[2] Mbller S. C., Plesser Th., Spato-temporal organization in non-equilibrium systems, Project-Verlag, Dortmund, 1992, 428 pp.

[3] Turring A. M., “The chemical basis of morphogenesis”, Philos. Trans. R. Soc. Lond. B. Biol. Sci., 237 (1952), 37–72 | DOI

[4] Meinhardt H., Models of biological pattern formation, Academic Press, New York, 1982, 230 pp.

[5] Kondo S., Asai R., “Turing patterns in fish skin?”, Nature, 376 (1995), 765–768 | DOI

[6] Romanovskii Yu. M., Stepanova N. V., Chernavskii D. S., Matematicheskaya biofizika, Nauka, M., 1984, 304 pp. | MR | Zbl

[7] Lucas W. J., “Mechanism of acquisition of exogenous bicarbonate by internodal cells of Chara corallina”, Planta, 156 (1982), 181–192 | DOI

[8] Toko K., Chosa H., Yamafuji K., “Dissipative structure in the Characeae: Spatial pattern of proton flux as a dissipative structure in characean cells”, J. theor. Biol., 114 (1985), 127–175 | DOI

[9] Bulychev A. A., Polezhaev A. A., Zykov S. V., Pljusnina T. Yu., Riznichenko G. Yu., Rubin A. B., Janto B. W., Zykov V. S., Mbller S. C., “Light-triggered pH banding profile in Chara cells revealed with a scanning pH microprobe and its relation to self-organization phenomena”, J. theor. Biol., 212 (2001), 275–294 | DOI

[10] Rovinsky A. B., Menzinger M., “Chemical instability induced by a differential flow”, Phys. Rev. Lett., 69 (1992), 1193–1196 | DOI

[11] Lobanov A. M., Plyusnina T. Yu., Riznichenko G. Yu., Starozhilova T. K., Rubin A. B., “Vliyanie elektricheskogo polya na struktury v reaktsionno-diffuzionnoi sisteme”, Biofizika, 45 (2000), 495–502

[12] Nicolis G., Prigogine I., Self-organization in non-equilibrium systems, Wiley, N.Y., 1977, 512 pp. | MR | Zbl