Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_4_a2, author = {L. A. Krukier and O. A. Lapshina}, title = {Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {23--32}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_4_a2/} }
TY - JOUR AU - L. A. Krukier AU - O. A. Lapshina TI - Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation JO - Matematičeskoe modelirovanie PY - 2004 SP - 23 EP - 32 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2004_16_4_a2/ LA - ru ID - MM_2004_16_4_a2 ER -
%0 Journal Article %A L. A. Krukier %A O. A. Lapshina %T Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation %J Matematičeskoe modelirovanie %D 2004 %P 23-32 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2004_16_4_a2/ %G ru %F MM_2004_16_4_a2
L. A. Krukier; O. A. Lapshina. Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 23-32. http://geodesic.mathdoc.fr/item/MM_2004_16_4_a2/
[1] Dullan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR
[2] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, URSS, M., 1998
[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl
[4] Taussky O., “Positive-definite matrices and their role in the study of the characteristic roots of general matrices”, Adv. Math., 2 (1968), 175–186 | DOI | MR | Zbl
[5] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. vuzov. Matematika, 1979, no. 7, 41–52 | MR | Zbl
[6] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl
[7] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl
[8] Greenbaum A., BIterative methods for solving Linear Systems, SIAM, Philadelphia, PA, 1997 | MR
[9] Hestenes M. R., Stiefel E., “Methods of conjugate gradients for solving linear systems”, J. Res. Natl. Bur. Stand., 49 (1954), 409–436 | MR
[10] Saad Y., Iterative methods for Sparse Linear Systems, PWS Publishing Company, 1995
[11] Saad Y. Schultz M. H., “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Scientific and Statistical Computing, 1986, 856–869 | DOI | MR | Zbl
[12] Tong C. H., Ye Q., Analysis of the finite precision biconjugate gradient algorithm for nonsymmetric linear systems, Report SCCM 95-11, Computer science Dept., Stanford University, 1995
[13] Sleijpen G. L. G., Fokkema D. R., “BICGSTAB(1) for linear equations involving unsymmetric matrices with complex spectrum”, Electronic transactions on numerical analysis, 1, 11–32 | MR | Zbl
[14] Van der Vorst H. A., “Bi-CGSTAB: a fast and smoothly converging variant if Bi-CG for the solution of non-symmetric linear systems”, SIAM J. Sci. Statist. Comput., 1992, no. 3, 631–644 | Zbl
[15] Freund R. W., Golub G. H. and Nachtigal N. M., “QMR: a quasi-minimal residual method for non-Hermitian linear systems”, Numer. Math., 60 (1991), 315–339 | DOI | MR | Zbl
[16] Saad Y., Van der Vorst H. A., “Iterative solution of linear systems in the 20th century”, J. of Computanional and Applied Mathemetics, Elsevier Science, 2000, no. 123, 1–33 | MR | Zbl
[17] Elman H. C., “Relaxed and stabilized incomplete factorizations for nonself adjoint linear systems”, BIT, 29:4 (1989), 890–915 | DOI | MR | Zbl
[18] Kaporin L. E., “Exlicit preconditioned conjugate gradient method for the solution of unsymmetric linear systems”, Internat. J. Comput. Math., 40 (1992), 169–187 | DOI