Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation
Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is after necessary one often has to solve very large linear unsymmetric systems in realistic scientific modelling. An efficient class of iterative methods for solving these systems is composed of the variational methods. BiCG and GMRES(IO) methods from this class were considered. Numerical investigation was carried out by the model of the linear algebraic equation system generated by finite-difference approximation of the convection-diffusion equation. Numerical results allowed to define domain of applicability of methods are obtained.
@article{MM_2004_16_4_a2,
     author = {L. A. Krukier and O. A. Lapshina},
     title = {Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_4_a2/}
}
TY  - JOUR
AU  - L. A. Krukier
AU  - O. A. Lapshina
TI  - Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 23
EP  - 32
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_4_a2/
LA  - ru
ID  - MM_2004_16_4_a2
ER  - 
%0 Journal Article
%A L. A. Krukier
%A O. A. Lapshina
%T Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation
%J Matematičeskoe modelirovanie
%D 2004
%P 23-32
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_4_a2/
%G ru
%F MM_2004_16_4_a2
L. A. Krukier; O. A. Lapshina. Numerical comparison of variational methods for solving the linear algebraic equation system obtained after finite-difference approximation of the convection-diffusion equation. Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 23-32. http://geodesic.mathdoc.fr/item/MM_2004_16_4_a2/

[1] Dullan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[2] Samarskii A. A., Vabischevich P. N., Chislennye metody resheniya zadach konvektsii-diffuzii, URSS, M., 1998

[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[4] Taussky O., “Positive-definite matrices and their role in the study of the characteristic roots of general matrices”, Adv. Math., 2 (1968), 175–186 | DOI | MR | Zbl

[5] Krukier L. A., “Neyavnye raznostnye skhemy i iteratsionnyi metod ikh resheniya dlya odnogo klassa sistem kvazilineinykh uravnenii”, Izv. vuzov. Matematika, 1979, no. 7, 41–52 | MR | Zbl

[6] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[7] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl

[8] Greenbaum A., BIterative methods for solving Linear Systems, SIAM, Philadelphia, PA, 1997 | MR

[9] Hestenes M. R., Stiefel E., “Methods of conjugate gradients for solving linear systems”, J. Res. Natl. Bur. Stand., 49 (1954), 409–436 | MR

[10] Saad Y., Iterative methods for Sparse Linear Systems, PWS Publishing Company, 1995

[11] Saad Y. Schultz M. H., “GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Scientific and Statistical Computing, 1986, 856–869 | DOI | MR | Zbl

[12] Tong C. H., Ye Q., Analysis of the finite precision biconjugate gradient algorithm for nonsymmetric linear systems, Report SCCM 95-11, Computer science Dept., Stanford University, 1995

[13] Sleijpen G. L. G., Fokkema D. R., “BICGSTAB(1) for linear equations involving unsymmetric matrices with complex spectrum”, Electronic transactions on numerical analysis, 1, 11–32 | MR | Zbl

[14] Van der Vorst H. A., “Bi-CGSTAB: a fast and smoothly converging variant if Bi-CG for the solution of non-symmetric linear systems”, SIAM J. Sci. Statist. Comput., 1992, no. 3, 631–644 | Zbl

[15] Freund R. W., Golub G. H. and Nachtigal N. M., “QMR: a quasi-minimal residual method for non-Hermitian linear systems”, Numer. Math., 60 (1991), 315–339 | DOI | MR | Zbl

[16] Saad Y., Van der Vorst H. A., “Iterative solution of linear systems in the 20th century”, J. of Computanional and Applied Mathemetics, Elsevier Science, 2000, no. 123, 1–33 | MR | Zbl

[17] Elman H. C., “Relaxed and stabilized incomplete factorizations for nonself adjoint linear systems”, BIT, 29:4 (1989), 890–915 | DOI | MR | Zbl

[18] Kaporin L. E., “Exlicit preconditioned conjugate gradient method for the solution of unsymmetric linear systems”, Internat. J. Comput. Math., 40 (1992), 169–187 | DOI