Chernov. Boundary-value problem with dynamical boundary conditions and moving phase bound (dehydrating kinetics)
Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary-value problems with moving phase bound and non-linear dynamical boundary conditions, which model the metal dehydrating kinetics, are considered. Change of phase and desorption on the surface are taken into consideration. Construction of the equations is given for different assumptions according to the experimental method of termodesorptional spectrometry. For the models with bulk and surface desorption the numerical methods are described and the results of numerical experiments are presented.
@article{MM_2004_16_4_a0,
     author = {Yu. V. Zaika and I. A. Chernov},
     title = {Chernov. {Boundary-value} problem with dynamical boundary conditions and moving phase bound (dehydrating kinetics)},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_4_a0/}
}
TY  - JOUR
AU  - Yu. V. Zaika
AU  - I. A. Chernov
TI  - Chernov. Boundary-value problem with dynamical boundary conditions and moving phase bound (dehydrating kinetics)
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 3
EP  - 16
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_4_a0/
LA  - ru
ID  - MM_2004_16_4_a0
ER  - 
%0 Journal Article
%A Yu. V. Zaika
%A I. A. Chernov
%T Chernov. Boundary-value problem with dynamical boundary conditions and moving phase bound (dehydrating kinetics)
%J Matematičeskoe modelirovanie
%D 2004
%P 3-16
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_4_a0/
%G ru
%F MM_2004_16_4_a0
Yu. V. Zaika; I. A. Chernov. Chernov. Boundary-value problem with dynamical boundary conditions and moving phase bound (dehydrating kinetics). Matematičeskoe modelirovanie, Tome 16 (2004) no. 4, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2004_16_4_a0/

[1] Castro F. J., Meyer G., “Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization (I): theoretical aspects”, Journal of Alloys and Compounds, 330–332 (2002), 59–63 | DOI

[2] Varias A. G., Massih A. R., “Hydride-induced embrittlement and fracture in metals-effect of stress and temperature distribution”, Journal of the Mechanics and Physics of Solids, 50 (2002), 1469–1510 | DOI | Zbl

[3] Lufrano J., Sofronis P., Bimbaum H. K., “Elastoplastically accomodated hydride formation and embrittlement”, Journal of the Mechanics and Physics of Solids, 46 (1998), 1497–1520 | DOI | Zbl

[4] Gabis I. E., “Metod kontsentratsionnykh impulsov dlya issledovaniya transporta vodoroda v tverdykh telakh”, Zhurnal tekhnicheskoi fiziki, 69:1 (1999), 99–103

[5] Zaika Yu. V., “Parametricheskaya regulyarizatsiya modeli vodorodopronitsaemosti s dinamicheskimi granichnymi usloviyami”, Matematicheskoe modelirovanie, 13:11 (2001), 69–87 | MR | Zbl

[6] Zaika Yu. V., “Opredelenie parametrov perenosa vodoroda skvoz membrany metodom kontsentratsionnykh impulsov”, Izvestiya vuzov, Fizika, 2002, no. 1, 81–87

[7] Gabis L, Evard E., Voit A., Chernov I., Zaika Yu., “Kinetics of decomposition of erbium hydride”, Journal of Alloys and Compounds, 356–357 (2003), 353–357 | DOI

[8] Zaika Yu. V., Chernov L. A., “Nonlinear dynamical boundary-value problem of hydrogen thermal desorption”, International Journal of Mathematics and Mathematical Sciences, 2003, no. 23, 1447–1463 | DOI | MR | Zbl