Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_3_a1, author = {F. S. Zaitsev and D. P. Kostomarov and I. I. Kurbet}, title = {Application of explicit iterative schemes for solution of kinetic problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {13--21}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_3_a1/} }
TY - JOUR AU - F. S. Zaitsev AU - D. P. Kostomarov AU - I. I. Kurbet TI - Application of explicit iterative schemes for solution of kinetic problems JO - Matematičeskoe modelirovanie PY - 2004 SP - 13 EP - 21 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2004_16_3_a1/ LA - ru ID - MM_2004_16_3_a1 ER -
F. S. Zaitsev; D. P. Kostomarov; I. I. Kurbet. Application of explicit iterative schemes for solution of kinetic problems. Matematičeskoe modelirovanie, Tome 16 (2004) no. 3, pp. 13-21. http://geodesic.mathdoc.fr/item/MM_2004_16_3_a1/
[1] Yu. N. Dnestrovskii, D. P. Kostomarov, Matematicheskoe modelirovanie plazmy, Nauka, M., 1993
[2] J. Killeen, G. D. Kerbel, M. G. McCoy, A. A. Mirin, Computational Methods for Kinetic Models of Magnetically Confined Plasmas, Springer, New York, 1986 | MR
[3] F. S. Zaitsev, M. R. O'Brien, M. Cox, “Three Dimensional Neoclassical Non-linear Kinetic Equation for Low Collisionality Axisymmetric Tokamak Plasmas”, Physics of Fluids B, 5:2 (1993), 509–519 | DOI
[4] M. R. O'Brien, M. Cox, C. A. Gardner and F. S. Zaitsev, “$3D$ Fokker-Planck Calculation of Alpha-Particle Distributions: a TFTR Simulation”, Nucl. Fusion, 35:12 (1995), 1537–1541 | DOI
[5] F. S. Zaitsev, R. J. Akers and M. R. O'Brien, “Perturbations to deuterium and tritium distributions caused by close collisions with high-energy alpha-particles”, Nucl. Fusion, 42 (2002), 1340–1347 | DOI
[6] F. S. Zaitsev, V. V. Longinov, M. R. O'Brien and R. Tanner, “Difference Schemes for the Time Evolution of Three-Dimensional Kinetic Equations”, J. Comput. Phys., 147 (1998), 239–264 | DOI | MR | Zbl
[7] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983 | MR
[8] V. T. Zhukov, “Yavno iteratsionnye skhemy dlya parabolicheskikh uravnenii”, Voprosy atomnoi nauki i tekhniki. Seriya: Matematicheskoe modelirovanie fizicheskikh protsessov, 1993, no. 4, 40–46
[9] A. S. Shvedov, V. T. Zhukov, “Yavnye iteratsionnye raznostnye skhemy dlya parabolicheskikh uravnenii”, Zhurnal chislennogo analiza i matematicheskogo modelirovaniya, 1998, 133–148 | MR | Zbl
[10] G. I. Marchuk, Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR
[11] V. T. Zhukov, Raznostnye skhemy lokalnykh iteratsii dlya parabolicheskikh uravnenii, Preprint, In-ta Prikladnoi matematiki im. M. V. Keldysha, 1986 | MR