On periodic boundary conditions for chain molecule in off lattice model
Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 102-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Periodic boundary conditions algorithm for chain molecule in off lattice molecular dynamics has been developed. The chain length can be essentially more than any size of modeled volume. The algorithm permits to save system puck coefficient by replacement of chain part out of the modeled volume by virtual particles and to simulate chain large-scale motions. The algorithm has been completed by virtual displacement method to observe chain mass center displacement exceeding chain characteristic size and modeled system size. The virtual displacement method is based on the application of kinematical quantities, which do not change under realization of periodic boundary conditions unlike the displacement itself, which cannot exceed the modeled volume sizes.
@article{MM_2004_16_2_a8,
     author = {E. M. Pestryaev},
     title = {On periodic boundary conditions for chain molecule in off lattice model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {102--110},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_2_a8/}
}
TY  - JOUR
AU  - E. M. Pestryaev
TI  - On periodic boundary conditions for chain molecule in off lattice model
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 102
EP  - 110
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_2_a8/
LA  - ru
ID  - MM_2004_16_2_a8
ER  - 
%0 Journal Article
%A E. M. Pestryaev
%T On periodic boundary conditions for chain molecule in off lattice model
%J Matematičeskoe modelirovanie
%D 2004
%P 102-110
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_2_a8/
%G ru
%F MM_2004_16_2_a8
E. M. Pestryaev. On periodic boundary conditions for chain molecule in off lattice model. Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 102-110. http://geodesic.mathdoc.fr/item/MM_2004_16_2_a8/

[1] Alder B. J., Wainwright T. E., “Studies in Molecular Dynamics. I. General Method”, J. Chem. Phys., 31:2 (1959), 459–466 | DOI | MR

[2] Alder B. J., Wainwright T. E., “Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres”, J. Chem. Phys., 33:5 (1960), 1439–1457 | DOI | MR

[3] Kheerman D. V., Metody kompyuternogo eksperimenta v teoreticheskoi fizike, Per. s angl., ed. S. A. Akhmanov, Nauka, Gl. red. fiz.-mat. lit., M., 1990, 176 pp.

[4] Balabaev N. K., Modelirovanie dvizheniya tsepnykh molekul metodom molekulyarnoi dinamiki, Diss. kand. fiz.-mat. nauk, LGU, L., 1982, 221 pp.

[5] Gotlib Yu. Ya., Darinskii A. A., Svetlov Yu. E., Fizicheskaya kinetika makromolekul, Khimiya, L., 1986, 272 pp.

[6] Procacci P., Berne B. J., “Multiple time scale methods for constant pressure molecular dynamics simulations of molecular system”, Mol. Phys., 83:2 (1994), 255–272 | DOI | MR

[7] Procacci P., Berne B. J., “Computer simulation of solid $C_{60}$ using multiple time step algorithm”, J. Chem. Phys., 101:3 (1994), 2421–2443 | DOI

[8] Forrest B. M., Suter U. W., “Hybrid Monte Carlo simulations of dense polymer systems”, J. Chem. Phys., 101:3 (1994), 2616–2629 | DOI

[9] Zhou R., Berne B. J., “A new molecular dynamics method combining the reference system propagator algorithm with a fast multipole method for simulating proteins and other complex systems”, J. Chem. Phys., 103:21 (1995), 9444–9459 | DOI

[10] Hentschke R., Bast T., Aydt E., Kotelyanskii M., “Gibbs-Ensemble Molecular Dynamics: A New Method for Simulations Involving Particle Exchange”, J. Mol. Modeling, 2 (1996), 319–326 | DOI

[11] Klein P., “Pressure and temperature control in molecular dynamics simulation: a unitary approach in discrete time”, Modelling Simul. Mater. Sci. Eng., 6 (1998), 405–421 | DOI

[12] Balabaev N. K, “Metodika modelirovaniya dinamiki polimerov”, Metody molekulyarnoi dinamiki v fizicheskoi khimii, Khimiya, M., 1996, 258–279

[13] Binder K., Baschnagel J., Benneman C., Paul W., “Monte Carlo and molecular dynamic simulation of the glass transition of polymers”, J. Phys.: Condens. Matter, 11 (1999), A47–A55 | DOI

[14] Baschnagel J., Benneman G., Paul W., Binder K., “Dynamics of a super cooled polymer melt above the modecoupling critical temperature: cage versus polymer-specific effects”, J. Phys.: Condens. Matter, 12 (2000), 6365–6374 | DOI

[15] Askadskii A. A., Kondraschenko V. I., Kompyuternoe materialovedenie polimerov, t. 1, Nauchnyi mir, M., 1999, 544 pp.

[16] De Zhen P., Idei skeilinga v fizike polimerov, Per. s angl., ed. akad. Lifshits I. M., Mir, M., 1982, 368 pp.

[17] Irzhak V. I., “Dinamika makromolekul: setka zatseplenii ili setka fizicheskikh svyazei”, Vysokomolek. soed., B42:9 (2000), 1616–1632

[18] Smirnoe B. M., Fizika fraktalnykh klasterov, Nauka, Gl. red. fiz.- mat. lit., M., 1991, 136 pp. | MR

[19] Pestrlee E. M., Nuretdinov P. M., “Fraktalnost traektorii molekul v metode molekulyarnoi dinamiki”, Metody kibernetiki khimiko-tekhnologicheskikh protsessov, Sb. tez. dokl. V mezhdunarodnoi nauchnoi konferentsii, t. 2, kn. 1 (21–22 iyunya 1999 g.), eds. Shammazov A. M. i dr., izd-vo UGNTU, Ufa, 1999, 104–105

[20] Pestrlee E. M., Nuretdinov P. M., “Izuchenie translyatsionnoi i vraschatelnoi samodiffuzii v desyatiprotsentnom polimernom rastvore metodom molekulyarnoi dinamiki”, Struktura i dinamika molekulyarnykh sistem, Sb. statei, Ch. 2, Ioshkar–Ola–Kazan–Moskva, 1997, 77–79

[21] Krokston K., Fizika zhidkogo sostoyaniya. Statisticheskoe vvedenie, Per. s angl., ed. Osipov A. I., Mir, M., 1978, 400 pp.

[22] Fatkullin N., Kimmich R., Kroutieva M., “The twice-renormalized Rouse formalism of polymer dynamics”, ZhETF, 118:1 (2000), 170–188

[23] Pestrlee E. M., “Issledovanie reptatsionnogo rezhima dvizheniya tsepi metodom molekulyarnoi dinamiki”, Struktura i dinamika molekulyarnykh sistem, Sb. statei, Vyp. VIII. Ch. 1, eds. Grunin Yu. B i dr., Ioshkar-Ola, 2001, 24