Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_2_a8, author = {E. M. Pestryaev}, title = {On periodic boundary conditions for chain molecule in off lattice model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {102--110}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_2_a8/} }
E. M. Pestryaev. On periodic boundary conditions for chain molecule in off lattice model. Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 102-110. http://geodesic.mathdoc.fr/item/MM_2004_16_2_a8/
[1] Alder B. J., Wainwright T. E., “Studies in Molecular Dynamics. I. General Method”, J. Chem. Phys., 31:2 (1959), 459–466 | DOI | MR
[2] Alder B. J., Wainwright T. E., “Studies in Molecular Dynamics. II. Behavior of a Small Number of Elastic Spheres”, J. Chem. Phys., 33:5 (1960), 1439–1457 | DOI | MR
[3] Kheerman D. V., Metody kompyuternogo eksperimenta v teoreticheskoi fizike, Per. s angl., ed. S. A. Akhmanov, Nauka, Gl. red. fiz.-mat. lit., M., 1990, 176 pp.
[4] Balabaev N. K., Modelirovanie dvizheniya tsepnykh molekul metodom molekulyarnoi dinamiki, Diss. kand. fiz.-mat. nauk, LGU, L., 1982, 221 pp.
[5] Gotlib Yu. Ya., Darinskii A. A., Svetlov Yu. E., Fizicheskaya kinetika makromolekul, Khimiya, L., 1986, 272 pp.
[6] Procacci P., Berne B. J., “Multiple time scale methods for constant pressure molecular dynamics simulations of molecular system”, Mol. Phys., 83:2 (1994), 255–272 | DOI | MR
[7] Procacci P., Berne B. J., “Computer simulation of solid $C_{60}$ using multiple time step algorithm”, J. Chem. Phys., 101:3 (1994), 2421–2443 | DOI
[8] Forrest B. M., Suter U. W., “Hybrid Monte Carlo simulations of dense polymer systems”, J. Chem. Phys., 101:3 (1994), 2616–2629 | DOI
[9] Zhou R., Berne B. J., “A new molecular dynamics method combining the reference system propagator algorithm with a fast multipole method for simulating proteins and other complex systems”, J. Chem. Phys., 103:21 (1995), 9444–9459 | DOI
[10] Hentschke R., Bast T., Aydt E., Kotelyanskii M., “Gibbs-Ensemble Molecular Dynamics: A New Method for Simulations Involving Particle Exchange”, J. Mol. Modeling, 2 (1996), 319–326 | DOI
[11] Klein P., “Pressure and temperature control in molecular dynamics simulation: a unitary approach in discrete time”, Modelling Simul. Mater. Sci. Eng., 6 (1998), 405–421 | DOI
[12] Balabaev N. K, “Metodika modelirovaniya dinamiki polimerov”, Metody molekulyarnoi dinamiki v fizicheskoi khimii, Khimiya, M., 1996, 258–279
[13] Binder K., Baschnagel J., Benneman C., Paul W., “Monte Carlo and molecular dynamic simulation of the glass transition of polymers”, J. Phys.: Condens. Matter, 11 (1999), A47–A55 | DOI
[14] Baschnagel J., Benneman G., Paul W., Binder K., “Dynamics of a super cooled polymer melt above the modecoupling critical temperature: cage versus polymer-specific effects”, J. Phys.: Condens. Matter, 12 (2000), 6365–6374 | DOI
[15] Askadskii A. A., Kondraschenko V. I., Kompyuternoe materialovedenie polimerov, t. 1, Nauchnyi mir, M., 1999, 544 pp.
[16] De Zhen P., Idei skeilinga v fizike polimerov, Per. s angl., ed. akad. Lifshits I. M., Mir, M., 1982, 368 pp.
[17] Irzhak V. I., “Dinamika makromolekul: setka zatseplenii ili setka fizicheskikh svyazei”, Vysokomolek. soed., B42:9 (2000), 1616–1632
[18] Smirnoe B. M., Fizika fraktalnykh klasterov, Nauka, Gl. red. fiz.- mat. lit., M., 1991, 136 pp. | MR
[19] Pestrlee E. M., Nuretdinov P. M., “Fraktalnost traektorii molekul v metode molekulyarnoi dinamiki”, Metody kibernetiki khimiko-tekhnologicheskikh protsessov, Sb. tez. dokl. V mezhdunarodnoi nauchnoi konferentsii, t. 2, kn. 1 (21–22 iyunya 1999 g.), eds. Shammazov A. M. i dr., izd-vo UGNTU, Ufa, 1999, 104–105
[20] Pestrlee E. M., Nuretdinov P. M., “Izuchenie translyatsionnoi i vraschatelnoi samodiffuzii v desyatiprotsentnom polimernom rastvore metodom molekulyarnoi dinamiki”, Struktura i dinamika molekulyarnykh sistem, Sb. statei, Ch. 2, Ioshkar–Ola–Kazan–Moskva, 1997, 77–79
[21] Krokston K., Fizika zhidkogo sostoyaniya. Statisticheskoe vvedenie, Per. s angl., ed. Osipov A. I., Mir, M., 1978, 400 pp.
[22] Fatkullin N., Kimmich R., Kroutieva M., “The twice-renormalized Rouse formalism of polymer dynamics”, ZhETF, 118:1 (2000), 170–188
[23] Pestrlee E. M., “Issledovanie reptatsionnogo rezhima dvizheniya tsepi metodom molekulyarnoi dinamiki”, Struktura i dinamika molekulyarnykh sistem, Sb. statei, Vyp. VIII. Ch. 1, eds. Grunin Yu. B i dr., Ioshkar-Ola, 2001, 24