Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_2_a5, author = {N. N. Anuchina and V. I. Volkov and N. S. Eskov and O. S. Ilyutina and O. M. Kozyrev}, title = {2D and {3D} simulation of {Rayleigh--Taylor} instability in cylindrical and spherical geometries}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {69--86}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_2_a5/} }
TY - JOUR AU - N. N. Anuchina AU - V. I. Volkov AU - N. S. Eskov AU - O. S. Ilyutina AU - O. M. Kozyrev TI - 2D and 3D simulation of Rayleigh--Taylor instability in cylindrical and spherical geometries JO - Matematičeskoe modelirovanie PY - 2004 SP - 69 EP - 86 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2004_16_2_a5/ LA - ru ID - MM_2004_16_2_a5 ER -
%0 Journal Article %A N. N. Anuchina %A V. I. Volkov %A N. S. Eskov %A O. S. Ilyutina %A O. M. Kozyrev %T 2D and 3D simulation of Rayleigh--Taylor instability in cylindrical and spherical geometries %J Matematičeskoe modelirovanie %D 2004 %P 69-86 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2004_16_2_a5/ %G ru %F MM_2004_16_2_a5
N. N. Anuchina; V. I. Volkov; N. S. Eskov; O. S. Ilyutina; O. M. Kozyrev. 2D and 3D simulation of Rayleigh--Taylor instability in cylindrical and spherical geometries. Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 69-86. http://geodesic.mathdoc.fr/item/MM_2004_16_2_a5/
[1] Anuchina N. N., Volkov V. I., Es'kov N. S., Numerical Modeling of Multi-Dimensional Flows with large deformations, Report at Russian/U.S. Weapons Laboratories introductory technical exchange in computational and computer science, Livermore, 1992
[2] Anuchina K. N., Volkov V. I., Es'kov K. S., “Chislennyi metod rascheta kontaktnykh granits s bolshimi deformatsiyami”, Tezisy dokladov. Mezhdunarodnaya konferentsiya. V Zababakhinskie chteniya; “Report at the 7-th International Workshop on The Physics of Compressible Turbulent Mixing”, St. Peterburg, 1999
[3] Anuchina N. N., Volkov V. I., Gordeichuk V. A., Es'kov K. S., Ilyutina O. S., Kozyrev O. M., “Metod i kompleks programm MAKh-3 chislennogo modelirovaniya trekhmernykh zadach gazovoi dinamiki”, XII Vserossiiskaya konferentsiya “Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov resheniya zadach matematicheskoi fiziki”, posvyaschennaya pamyati K. I. Babenko, Tezisy dokladov, Novorossiisk, 1998
[4] Anuchina N. N., Gordeychuk V. A., Es'kov N. S., Ilutina O. S., Kozyrev O. M., Volkov V. I., Proceeding of International Workshop on Physics of Compressible Turbulent Mixing (Marseille, 1997), IUSTI, Marseille, France
[5] Anuchina N. N, Volkov V. I., Gordeychuk V. A., Es'kov N. S., Ilutina O. S., Kozyrev O. M., “$3D$ numerical simulation of Rayleigh-Taylor instability using MAH-3 code”, Laser and Particle Beams, 18 (2000), 175–181 | DOI
[6] Hirt C. W., Amsden A. A., Cook J. L., “An arbitrary Lagrangian-Eulerian computing method for all flow speed”, J. of Comput. Physics, 14:3 (1974) | MR | Zbl
[7] Pracht W. E., “Calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computting mesh”, J. of Comput. Physics, 17:3 (1975) | Zbl
[8] Hattori F., Takabe K. and Mima K., “Rayleigh-Taylor instability in a spherically stagnating system”, Phys. Fluids, 29:5 (1986), 1719–1724 | DOI | Zbl
[9] Sakagami K., Nishihara K., “Three-dimensional Rayleigh-Taylor instability of spherical systems”, Physical review letters, 65:4 (1990), 432–435 | DOI