2D and 3D simulation of Rayleigh--Taylor instability in cylindrical and spherical geometries
Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 69-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulations for cylindrical and spherical geometries are presented, which study linear and nonlinear stages of evolution of small perturbations at the interface of two incompressible, non-viscous, nonheat-conducting liquids being under effect of Rayleigh–Taylor instability. Initial perturbations of the interface are considered for two cases: when the flow is described with two and three spatial variables. Results of the numerical simulations of the linear evolution stage for the small perturbations are in good agreement with the analytical laws of small single-mode perturbation evolution, derived in linearized formulation (basic solution is at rest) for cylindrical and spherical geometries. Effect of dimensionality of space and geometry (plane, cylindrical or spherical) on the evolution of perturbations is studied for nonlinear stage. Basic characteristics of the difference methods implemented in MAH and MAH-3 software packages used for numerical studies are briefly described.
@article{MM_2004_16_2_a5,
     author = {N. N. Anuchina and V. I. Volkov and N. S. Eskov and O. S. Ilyutina and O. M. Kozyrev},
     title = {2D and {3D} simulation of {Rayleigh--Taylor} instability in cylindrical and spherical geometries},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {69--86},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_2_a5/}
}
TY  - JOUR
AU  - N. N. Anuchina
AU  - V. I. Volkov
AU  - N. S. Eskov
AU  - O. S. Ilyutina
AU  - O. M. Kozyrev
TI  - 2D and 3D simulation of Rayleigh--Taylor instability in cylindrical and spherical geometries
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 69
EP  - 86
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_2_a5/
LA  - ru
ID  - MM_2004_16_2_a5
ER  - 
%0 Journal Article
%A N. N. Anuchina
%A V. I. Volkov
%A N. S. Eskov
%A O. S. Ilyutina
%A O. M. Kozyrev
%T 2D and 3D simulation of Rayleigh--Taylor instability in cylindrical and spherical geometries
%J Matematičeskoe modelirovanie
%D 2004
%P 69-86
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_2_a5/
%G ru
%F MM_2004_16_2_a5
N. N. Anuchina; V. I. Volkov; N. S. Eskov; O. S. Ilyutina; O. M. Kozyrev. 2D and 3D simulation of Rayleigh--Taylor instability in cylindrical and spherical geometries. Matematičeskoe modelirovanie, Tome 16 (2004) no. 2, pp. 69-86. http://geodesic.mathdoc.fr/item/MM_2004_16_2_a5/

[1] Anuchina N. N., Volkov V. I., Es'kov N. S., Numerical Modeling of Multi-Dimensional Flows with large deformations, Report at Russian/U.S. Weapons Laboratories introductory technical exchange in computational and computer science, Livermore, 1992

[2] Anuchina K. N., Volkov V. I., Es'kov K. S., “Chislennyi metod rascheta kontaktnykh granits s bolshimi deformatsiyami”, Tezisy dokladov. Mezhdunarodnaya konferentsiya. V Zababakhinskie chteniya; “Report at the 7-th International Workshop on The Physics of Compressible Turbulent Mixing”, St. Peterburg, 1999

[3] Anuchina N. N., Volkov V. I., Gordeichuk V. A., Es'kov K. S., Ilyutina O. S., Kozyrev O. M., “Metod i kompleks programm MAKh-3 chislennogo modelirovaniya trekhmernykh zadach gazovoi dinamiki”, XII Vserossiiskaya konferentsiya “Teoreticheskie osnovy i konstruirovanie chislennykh algoritmov resheniya zadach matematicheskoi fiziki”, posvyaschennaya pamyati K. I. Babenko, Tezisy dokladov, Novorossiisk, 1998

[4] Anuchina N. N., Gordeychuk V. A., Es'kov N. S., Ilutina O. S., Kozyrev O. M., Volkov V. I., Proceeding of International Workshop on Physics of Compressible Turbulent Mixing (Marseille, 1997), IUSTI, Marseille, France

[5] Anuchina N. N, Volkov V. I., Gordeychuk V. A., Es'kov N. S., Ilutina O. S., Kozyrev O. M., “$3D$ numerical simulation of Rayleigh-Taylor instability using MAH-3 code”, Laser and Particle Beams, 18 (2000), 175–181 | DOI

[6] Hirt C. W., Amsden A. A., Cook J. L., “An arbitrary Lagrangian-Eulerian computing method for all flow speed”, J. of Comput. Physics, 14:3 (1974) | MR | Zbl

[7] Pracht W. E., “Calculating three-dimensional fluid flows at all speeds with an Eulerian-Lagrangian computting mesh”, J. of Comput. Physics, 17:3 (1975) | Zbl

[8] Hattori F., Takabe K. and Mima K., “Rayleigh-Taylor instability in a spherically stagnating system”, Phys. Fluids, 29:5 (1986), 1719–1724 | DOI | Zbl

[9] Sakagami K., Nishihara K., “Three-dimensional Rayleigh-Taylor instability of spherical systems”, Physical review letters, 65:4 (1990), 432–435 | DOI