To the self-organisation problem: a model of formation of the complicated functional systems
Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 109-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model describing the forming of some patterns with prescribed properties which consist of the given types of elements is proposed. This model is based on the approach when the final complicated composition corresponds to a dynamical system formed from “elementary” subsystems. This composition (cascade) can be both a homogeneous one, i.e. it can consist of identical components, and it can have certain nonhomegeneities (defects). As a set of components one-dimensional maps with chaotic behaviour are considered. Therewith, it is required that the whole cascade has the prescribed type of the behaviour. It is shown that only a small part of the obtained nonhomogeneous cascades can possess the given evolutionary regime. On the basis of these results we draw a parallel with the self-organisation problem and formation of complex molecules.
@article{MM_2004_16_12_a9,
     author = {A. Yu. Loskutov and K. A. Vasil'ev},
     title = {To the self-organisation problem: a model of formation of the complicated functional systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_12_a9/}
}
TY  - JOUR
AU  - A. Yu. Loskutov
AU  - K. A. Vasil'ev
TI  - To the self-organisation problem: a model of formation of the complicated functional systems
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 109
EP  - 122
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_12_a9/
LA  - ru
ID  - MM_2004_16_12_a9
ER  - 
%0 Journal Article
%A A. Yu. Loskutov
%A K. A. Vasil'ev
%T To the self-organisation problem: a model of formation of the complicated functional systems
%J Matematičeskoe modelirovanie
%D 2004
%P 109-122
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_12_a9/
%G ru
%F MM_2004_16_12_a9
A. Yu. Loskutov; K. A. Vasil'ev. To the self-organisation problem: a model of formation of the complicated functional systems. Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 109-122. http://geodesic.mathdoc.fr/item/MM_2004_16_12_a9/

[1] V. V. Alekseev, L. Yu. Loskutov., “Upravlenie sistemoi so strannym attraktorom posredstvom periodicheskogo parametricheskogo vozdeistviya”, DAN SSSR, 293 (1987), 1346–1348 | MR

[2] E. Ott, C. Grebogi, J. A. Yorke, “Controlling chaos”, Phys. Rev. Lett., 64 (1990), 1196–1199 | DOI | MR | Zbl

[3] L. Fronzoni, M. Geocondo, M. Pettini, “Experimental evidence of suppression of chaos by resonant parametric perturbations”, Phys. Rev. A, 43 (1991), 6483–6487 | DOI

[4] F. J. Romeiras, E. Ott, C. Grebogi, W. P. Dayawansa, “Controlling chaotic dynamical systems”, Physica D, 58 (1992), 165–192 | DOI | MR

[5] A. Yu. Loskutov, A. I. Shishmarev, “Ob odnom svoistve semeistva kvadratichnykh otobrazhenii pri parametricheskom vozdeistvii”, Uspekhi matem. nauk, 48:1 (1993), 169–170 | MR | Zbl

[6] T. Shinbrot, C. Grebogi, E. Ott, J. A. Yorke, “Using small perturbations to control of chaos”, Nature, 363 (1993), 411–417 | DOI

[7] A. Loskutov, A. I. Shishmarev, “Control of dynamical systems behavior by parametric perturbations: an analytic approach”, Chaos, 4 (1994), 351–355 | DOI | MR

[8] A. Yu. Loskutov, “Problemy nelineinoi dinamiki. II. Podavlenie khaosa i upravlenie dinamicheskimi sistemami”, Vestn. Mosk. un-ta, ser. Fiz.-astr., 2001, no. 3, 3–21 | MR | Zbl

[9] A. Yu. Loskutov, “Khaos i upravlenie dinamicheskimi sistemami”, Nelineinaya dinamika i upravlenie, eds. S. V. Emelyanov, S. K. Korovin, Fizmatlit, M., 2001, 163–216

[10] A. Loskutov, S. D. Rybalko, “Some properties of one- and two-dimensional perturbed maps”, Proc. of the 5th Int. Conf. on Difference Equations and Applications (ICDEA'2002, Temuco, Chile, January 3–7, 2002), Taylor and Francis Publ., London, 2002, 207–230 | MR | Zbl

[11] A. Lasota, M. C. Mackey., Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer, Berlin, 1994 | MR | Zbl

[12] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995 | MR

[13] W. de Melo, S. van Strien, One-Dimensional Dynamics, Springer, Berlin, 1993 | MR | Zbl

[14] A. Loskutov, V. M. Tereshko, K. A. Vasiliev, “Stabilization of chaotic dynamics of one-dimensional maps”, Int. J. Bif. and Chaos, 6 (1996), 725–735 | DOI | MR | Zbl

[15] A. N. Sharkovskii, Yu. L. Maistrenko, E. Yu. Romanenko, Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986 | MR

[16] G. Shuster, Determinirovannyi khaos. Vvedenie, Mir, M., 1988 | MR | Zbl

[17] M. V. Jakobson, “Absolutely continuous invariant measures for one-parameter families of onedimensional maps”, Commun. Math. Phys., 81:1 (1981), 39–88 | DOI | MR | Zbl

[18] M. V. Hirsch, “Convergent activation dynamics in continuous time networks”, Neural Networks, 2 (1989), 331–349 | DOI

[19] H. L. Smith, “Convergent and oscillatory activation dynamics for cascades of neural nets with nearest neighbor competitive or cooperative interactions”, Neural Networks, 4 (1991), 41–46 | DOI

[20] A. Loskutov, V. M. Tereshko, K. A. Vasiliev, “Predicted dynamics for cyclic cascades of chaotic deterministic automata”, Int. J. Neural Syst., 6 (1995), 216–224