Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2004_16_12_a9, author = {A. Yu. Loskutov and K. A. Vasil'ev}, title = {To the self-organisation problem: a model of formation of the complicated functional systems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {109--122}, publisher = {mathdoc}, volume = {16}, number = {12}, year = {2004}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2004_16_12_a9/} }
TY - JOUR AU - A. Yu. Loskutov AU - K. A. Vasil'ev TI - To the self-organisation problem: a model of formation of the complicated functional systems JO - Matematičeskoe modelirovanie PY - 2004 SP - 109 EP - 122 VL - 16 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2004_16_12_a9/ LA - ru ID - MM_2004_16_12_a9 ER -
%0 Journal Article %A A. Yu. Loskutov %A K. A. Vasil'ev %T To the self-organisation problem: a model of formation of the complicated functional systems %J Matematičeskoe modelirovanie %D 2004 %P 109-122 %V 16 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2004_16_12_a9/ %G ru %F MM_2004_16_12_a9
A. Yu. Loskutov; K. A. Vasil'ev. To the self-organisation problem: a model of formation of the complicated functional systems. Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 109-122. http://geodesic.mathdoc.fr/item/MM_2004_16_12_a9/
[1] V. V. Alekseev, L. Yu. Loskutov., “Upravlenie sistemoi so strannym attraktorom posredstvom periodicheskogo parametricheskogo vozdeistviya”, DAN SSSR, 293 (1987), 1346–1348 | MR
[2] E. Ott, C. Grebogi, J. A. Yorke, “Controlling chaos”, Phys. Rev. Lett., 64 (1990), 1196–1199 | DOI | MR | Zbl
[3] L. Fronzoni, M. Geocondo, M. Pettini, “Experimental evidence of suppression of chaos by resonant parametric perturbations”, Phys. Rev. A, 43 (1991), 6483–6487 | DOI
[4] F. J. Romeiras, E. Ott, C. Grebogi, W. P. Dayawansa, “Controlling chaotic dynamical systems”, Physica D, 58 (1992), 165–192 | DOI | MR
[5] A. Yu. Loskutov, A. I. Shishmarev, “Ob odnom svoistve semeistva kvadratichnykh otobrazhenii pri parametricheskom vozdeistvii”, Uspekhi matem. nauk, 48:1 (1993), 169–170 | MR | Zbl
[6] T. Shinbrot, C. Grebogi, E. Ott, J. A. Yorke, “Using small perturbations to control of chaos”, Nature, 363 (1993), 411–417 | DOI
[7] A. Loskutov, A. I. Shishmarev, “Control of dynamical systems behavior by parametric perturbations: an analytic approach”, Chaos, 4 (1994), 351–355 | DOI | MR
[8] A. Yu. Loskutov, “Problemy nelineinoi dinamiki. II. Podavlenie khaosa i upravlenie dinamicheskimi sistemami”, Vestn. Mosk. un-ta, ser. Fiz.-astr., 2001, no. 3, 3–21 | MR | Zbl
[9] A. Yu. Loskutov, “Khaos i upravlenie dinamicheskimi sistemami”, Nelineinaya dinamika i upravlenie, eds. S. V. Emelyanov, S. K. Korovin, Fizmatlit, M., 2001, 163–216
[10] A. Loskutov, S. D. Rybalko, “Some properties of one- and two-dimensional perturbed maps”, Proc. of the 5th Int. Conf. on Difference Equations and Applications (ICDEA'2002, Temuco, Chile, January 3–7, 2002), Taylor and Francis Publ., London, 2002, 207–230 | MR | Zbl
[11] A. Lasota, M. C. Mackey., Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Springer, Berlin, 1994 | MR | Zbl
[12] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995 | MR
[13] W. de Melo, S. van Strien, One-Dimensional Dynamics, Springer, Berlin, 1993 | MR | Zbl
[14] A. Loskutov, V. M. Tereshko, K. A. Vasiliev, “Stabilization of chaotic dynamics of one-dimensional maps”, Int. J. Bif. and Chaos, 6 (1996), 725–735 | DOI | MR | Zbl
[15] A. N. Sharkovskii, Yu. L. Maistrenko, E. Yu. Romanenko, Raznostnye uravneniya i ikh prilozheniya, Naukova dumka, Kiev, 1986 | MR
[16] G. Shuster, Determinirovannyi khaos. Vvedenie, Mir, M., 1988 | MR | Zbl
[17] M. V. Jakobson, “Absolutely continuous invariant measures for one-parameter families of onedimensional maps”, Commun. Math. Phys., 81:1 (1981), 39–88 | DOI | MR | Zbl
[18] M. V. Hirsch, “Convergent activation dynamics in continuous time networks”, Neural Networks, 2 (1989), 331–349 | DOI
[19] H. L. Smith, “Convergent and oscillatory activation dynamics for cascades of neural nets with nearest neighbor competitive or cooperative interactions”, Neural Networks, 4 (1991), 41–46 | DOI
[20] A. Loskutov, V. M. Tereshko, K. A. Vasiliev, “Predicted dynamics for cyclic cascades of chaotic deterministic automata”, Int. J. Neural Syst., 6 (1995), 216–224