Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups
Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 11-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new formulas containing Gauss hypergeometric function, $_3F_2$-function, Meyer $G$-function, Bessel, MacDonald and Whittaker functions are obtained by group theoretical methods in this paper. The support of our approach is the most degenerated representation of unimodular pseudoorthogonal group $SO(p,q)$ into group of automorphisms of the linear space $D_\sigma$ of infinitely differentiable $\sigma$-homogeneous functions defined on a cone in $\mathbf R^{p+q}$. We considered the matrix elements of transforms of basises of $D_\sigma$ and the matrix elements of the values of above representation and its subrepresentations. The relations between these elements induced new formulas for above special functions of mathematical physics.
@article{MM_2004_16_12_a1,
     author = {I. A. Shilin},
     title = {Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_12_a1/}
}
TY  - JOUR
AU  - I. A. Shilin
TI  - Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 11
EP  - 19
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_12_a1/
LA  - ru
ID  - MM_2004_16_12_a1
ER  - 
%0 Journal Article
%A I. A. Shilin
%T Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups
%J Matematičeskoe modelirovanie
%D 2004
%P 11-19
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_12_a1/
%G ru
%F MM_2004_16_12_a1
I. A. Shilin. Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups. Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 11-19. http://geodesic.mathdoc.fr/item/MM_2004_16_12_a1/

[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978, 400 pp. | MR

[2] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983, 280 pp. | MR

[3] V. A. Dorodnitsyn, Gruppovye svoistva raznostnykh uravnenii, Fizmatlit, M., 2001, 240 pp. | Zbl

[4] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991, 588 pp. | MR | Zbl

[5] N. Ya. Vilenkin, A. U. Klimyk, “Predstavleniya grupp Li i spetsialnye funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 59, VINITI AN SSSR, M., 1990, 145–264 | MR

[6] N. Ya. Vilenkin, A. U. Klimyk, Representation of Lie Groups and Special Functions, vol. 1, Kluwer Academic Publishers, Dordrecht, 1991 ; vol. 3, 1992 ; vol. 2, 1993, 1920 pp. | MR | Zbl | Zbl | Zbl

[7] G. Beitmen, A. Erdei, Tablitsy integralnykh preobrazovanii, 1, Nauka, M., 1969, 344 pp.

[8] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatlit, M., 1962, 1100 pp. | MR

[9] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981, 800 pp. | MR | Zbl

[10] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986, 800 pp. | MR

[11] I. A. Shilin, Sootnosheniya dlya nekotorykh spetsialnykh funktsii, svyazannye s odnoi realizatsiei maksimalno vyrozhdennykh predstavlenii gruppy $SO(2,1)$, Dep. rukop. No V00.126, VINITI RAN, M., 2000, 40 pp.