Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups
Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 11-19

Voir la notice de l'article provenant de la source Math-Net.Ru

Some new formulas containing Gauss hypergeometric function, $_3F_2$-function, Meyer $G$-function, Bessel, MacDonald and Whittaker functions are obtained by group theoretical methods in this paper. The support of our approach is the most degenerated representation of unimodular pseudoorthogonal group $SO(p,q)$ into group of automorphisms of the linear space $D_\sigma$ of infinitely differentiable $\sigma$-homogeneous functions defined on a cone in $\mathbf R^{p+q}$. We considered the matrix elements of transforms of basises of $D_\sigma$ and the matrix elements of the values of above representation and its subrepresentations. The relations between these elements induced new formulas for above special functions of mathematical physics.
@article{MM_2004_16_12_a1,
     author = {I. A. Shilin},
     title = {Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {16},
     number = {12},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_12_a1/}
}
TY  - JOUR
AU  - I. A. Shilin
TI  - Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 11
EP  - 19
VL  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_12_a1/
LA  - ru
ID  - MM_2004_16_12_a1
ER  - 
%0 Journal Article
%A I. A. Shilin
%T Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups
%J Matematičeskoe modelirovanie
%D 2004
%P 11-19
%V 16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_12_a1/
%G ru
%F MM_2004_16_12_a1
I. A. Shilin. Formulas for special functions of mathematical physics connected with unimodular pseudoorthogonal groups. Matematičeskoe modelirovanie, Tome 16 (2004) no. 12, pp. 11-19. http://geodesic.mathdoc.fr/item/MM_2004_16_12_a1/