Oil displacement modeling on percolation lattice using multiprocessor computer
Matematičeskoe modelirovanie, Tome 16 (2004) no. 11, pp. 77-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamic percolation model (DPM) of oil displacement has been realized in numerical simulation. Such features of DPM, as percolation threshold and closed clusters are well known. Numerical experiment showed new important for applications feature of DPM: filtration flux increases, when external pressure is provided in pulse regime. Optimal values of pulse regime parameters were calculated in numerical experiment. Modeling was fulfilled on lattice consisting of $10^8$ points, hich is statistically representable for oil sratum fragment of macroscopic size.
@article{MM_2004_16_11_a6,
     author = {S. S. Lapushkin and M. V. Iakobovski and M. H. Brenerman},
     title = {Oil displacement modeling on percolation lattice using multiprocessor computer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {16},
     number = {11},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_11_a6/}
}
TY  - JOUR
AU  - S. S. Lapushkin
AU  - M. V. Iakobovski
AU  - M. H. Brenerman
TI  - Oil displacement modeling on percolation lattice using multiprocessor computer
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 77
EP  - 88
VL  - 16
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_11_a6/
LA  - ru
ID  - MM_2004_16_11_a6
ER  - 
%0 Journal Article
%A S. S. Lapushkin
%A M. V. Iakobovski
%A M. H. Brenerman
%T Oil displacement modeling on percolation lattice using multiprocessor computer
%J Matematičeskoe modelirovanie
%D 2004
%P 77-88
%V 16
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_11_a6/
%G ru
%F MM_2004_16_11_a6
S. S. Lapushkin; M. V. Iakobovski; M. H. Brenerman. Oil displacement modeling on percolation lattice using multiprocessor computer. Matematičeskoe modelirovanie, Tome 16 (2004) no. 11, pp. 77-88. http://geodesic.mathdoc.fr/item/MM_2004_16_11_a6/

[1] V. E. Alemasov, M. Kh. Brenerman, A. R. Kessel, Ya. I. Kravtsov, “Modelirovanie protsessov v “slabo” peremeshannykh mnogofaznykh sredakh s pomoschyu sluchainykh bluzhdanii. Modeli “bluzhdayuschikh faz” i “bluzhdayuschikh voln””, Matematicheskoe modelirovanie, 8:5 (1996), 37–50 | Zbl

[2] Nikiforov A. I., Nikanshin D. P., “Perenos chastits dvukhfaznym filtratsionnym potokom”, Matematicheskoe modelirovanie, 10:6 (1998), 42–52 | MR

[3] Entov V. M., Musin P. M., “Mikromekhanika nelineinykh dvukhfaznykh techenii v poristykh sredakh. Stochnoe modelirovanie i perkolyatsionnyi analiz”, Izv. RAN, MZhG, 1997

[4] V. E. Alemasov, D. V. Aprosin, M. Kh. Brenerman, A. R. Kessel, Ya. I. Kravtsov, “Chislennoe modelirovanie protsessov filtratsii v neftyanom plaste”, Zhurnal fizicheskoi khimii, 72:3 (1998), 569–573

[5] V. E. Alemasov, D. V. Aprosin, M. Kh. Brenerman, A. R. Kessel, Ya. I. Kravtsov, “Dinamicheskaya perkolyatsionnaya model dvukhfaznoi filtratsii kak model protsessov v neftyanom plaste”, Izvestiya akademii nauk, Energetika, 1998, no. 4, 65–77

[6] Glouber R., J. Math Phys., 4 (1963), 469 | DOI

[7] Kessel A. R., Berim G. O., Prog. Synopsis of VI UNITAR International Conference on Heavy Crude and Tav Sands, Houston Texas, 1995

[8] Berim G. O, Kessel A. R., “Obobschennaya kineticheskaya model Izinga. Prilozhenie k zadacham filtratsii nefti”, Izvestiya akademii nauk, Energetika, 1998, no. 4, 52–64

[9] I. M. Sobol, Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR