Modeling of the two-phase body with account of carrying abilities of the fuild
Matematičeskoe modelirovanie, Tome 16 (2004) no. 11, pp. 47-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the one-dimensional kinematic model (Maltsev L. E.) of the two-phase environment is considered. It is based on two new hypothesizes, according to which the tense and deformed condition of the two-phase body is described by the system of linear elliptical equations. These equations differ from the Lame equations of the elasticity theory by two terms in each equation. These terms describe the carrying ability of the liquid phase or reduction of the tense in the hard phase. For the research of new characteristics of the Lame generalized differential operator the Hilbert space is introduced which is based on an energy product. A relation between the energy product with specific potential energy of the two-phase body is established. The statement of the problem of minimum square-law functional in Hilbert space is suggested. It allows us to use the variation methods of mathematical physics for the two-phase body. The original method of solution of the task of operating a single force on a two-phase elastic half-space with the help of a kinematic model is presented. Applying the obtained fundamental solution to research of the tight and strained state of the two-phase basis loaded by uniformly distributed load on round and on rectangular platforms is shown.
@article{MM_2004_16_11_a4,
     author = {T. V. Mal'tseva and E. R. Trefilina},
     title = {Modeling of the two-phase body with account of carrying abilities of the fuild},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--60},
     publisher = {mathdoc},
     volume = {16},
     number = {11},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_11_a4/}
}
TY  - JOUR
AU  - T. V. Mal'tseva
AU  - E. R. Trefilina
TI  - Modeling of the two-phase body with account of carrying abilities of the fuild
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 47
EP  - 60
VL  - 16
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_11_a4/
LA  - ru
ID  - MM_2004_16_11_a4
ER  - 
%0 Journal Article
%A T. V. Mal'tseva
%A E. R. Trefilina
%T Modeling of the two-phase body with account of carrying abilities of the fuild
%J Matematičeskoe modelirovanie
%D 2004
%P 47-60
%V 16
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_11_a4/
%G ru
%F MM_2004_16_11_a4
T. V. Mal'tseva; E. R. Trefilina. Modeling of the two-phase body with account of carrying abilities of the fuild. Matematičeskoe modelirovanie, Tome 16 (2004) no. 11, pp. 47-60. http://geodesic.mathdoc.fr/item/MM_2004_16_11_a4/

[1] Bugrov A. K, Golli A. V., Kagan A. A., Kuraev S. N., Pirogov I. A., Shashkin A. G., “Naturnye issledovaniya napryazhenno-deformirovannogo sostoyaniya i konsolidatsii osnovanii sooruzhenii kompleksa zaschity Sankt-Peterburga ot navodnenii”, Osnovaniya, fundamenty i mekhanika gruntov, 1999, no. 1, 2–9

[2] Maltsev L. E., Bai V. F., Maltseva T. V., Kinematicheskaya model grunta i biomaterialov, Stroiizdat, SPb., 2002, 320 pp.

[3] Maltseva T. V., “Udelnaya potentsialnaya energiya dvukhfaznogo tela”, Materialy Mezhdunarodnogo Soveschaniya zav. kafedrami Mekhaniki gruntov, Inzhenernoi geologii, Osnovanii i fundamentov i Podzemnogo stroitelstva, MGASU, M., 2003, 89–94

[4] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, M., 1957, 476 pp. | MR

[5] Mikhlin S. T., Problema minimuma kvadratichnogo funktsionala, Izd. Tekhniko-teoreticheskoi literatury, M., 1952, 216 pp.

[6] Filonenko-Borodin M. M., Teoriya uprugosti, Fizmatgiz, M., 1959, 364 pp.

[7] Ionov V. K, Ogibalov P. M., Prochnost prostranstvennykh elementov konstruktsii, Vyssh. shk., M., 1972, 751 pp.

[8] Bezukhoe N. I., Osnovy teorii uprugosti, plastichnosti i polzuchesti, Vyssh. shk., M., 1968, 512 pp.