Difference scheme for 2D nonstationary equations of gas dynamics in three temperature
Matematičeskoe modelirovanie, Tome 16 (2004) no. 10, pp. 107-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical scheme for numerical modelling 2D nonstationary flow of the heat conducting gas in three temperature approach on the curved grids is studied. Differential equations of the problem are splitted for the processes: gas dynamic process and heat conductivity process. For linearizing nonlinear system obtained in the heat conductivity, it is suggested to use Newton approach. Algebraic equations are solved by GMRES approach using SPARSKIT software. Numerical scheme is verified by numerical tests.
@article{MM_2004_16_10_a9,
     author = {N. M. Gizzatkulov},
     title = {Difference scheme for {2D} nonstationary equations of gas dynamics in three temperature},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--119},
     publisher = {mathdoc},
     volume = {16},
     number = {10},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2004_16_10_a9/}
}
TY  - JOUR
AU  - N. M. Gizzatkulov
TI  - Difference scheme for 2D nonstationary equations of gas dynamics in three temperature
JO  - Matematičeskoe modelirovanie
PY  - 2004
SP  - 107
EP  - 119
VL  - 16
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2004_16_10_a9/
LA  - ru
ID  - MM_2004_16_10_a9
ER  - 
%0 Journal Article
%A N. M. Gizzatkulov
%T Difference scheme for 2D nonstationary equations of gas dynamics in three temperature
%J Matematičeskoe modelirovanie
%D 2004
%P 107-119
%V 16
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2004_16_10_a9/
%G ru
%F MM_2004_16_10_a9
N. M. Gizzatkulov. Difference scheme for 2D nonstationary equations of gas dynamics in three temperature. Matematičeskoe modelirovanie, Tome 16 (2004) no. 10, pp. 107-119. http://geodesic.mathdoc.fr/item/MM_2004_16_10_a9/

[1] G. V. Dolgoleva, A. V. Zabrodin, “Razrabotka termoyadernykh mishenei na osnove realizatsii kontseptsii bezudarnogo szhatiya”, Aeromekhanika i gazovaya dinamika, 2002, no. 2

[2] L. V. Zabrodin, G. P. Prokopov, “Metodika chislennogo modelirovaniya dvumernykh nestatsionarnykh techenii teploprovodnogo gaza v trekhtemperaturnom priblizhenii”, VANT, ser. Matematicheskoe modelirovanie fizicheskikh protsessov, 1998, no. Z

[3] V. T. Zhukov, O. B. Feodoritova, Raznostnye skhemy dlya uravnenii teploprovodnosti na osnove lokalnykh srednekvadratichnykh priblizhenii, Preprint IPM im. M. V. Keldysha RAN, No 97, 1989 | MR

[4] V. T. Zhukov, A. V. Zabrodin, O. B. Feodoritova, Skhema resheniya nestatsionarnykh dvumernykh uravnenii gazovoi dinamiki s teploprovodnostyu na podvizhnykh krivolineinykh setkakh, Preprint IPM im. M. V. Keldysha RAN, No 18, 1991 | MR

[5] V. T. Zhukov, A. V. Zabrodin, B. C. Imshennik , O. B. Feodoritova, Chislennoe modelirovanie misheni tyazheloionnogo termoyadernogo sinteza v priblizhenii teploprovodnoi gazodinamiki, Preprint IPM im. M. V. Keldysha RAN, No 41, 1993

[6] B. C. Ryabenkii, Vvedenie v vychislitelnuyu matematiku, Ucheb. posobie: Dlya vuzov, Fizmatlit, M., 1994 | MR

[7] R. P. Fedorenko, Vvedenie v vychislitelnuyu fiziku, Ucheb. posobie: Dlya vuzov, Izd-vo Mosk. fiz.-tekhn. in-ta, M., 1994

[8] SPARSKIT: a basic tool-kit for sparse matrix computations (Version 2), , University of Minnesota Department of Computer Science and Engineering http://www.cs.umn.edu/Research/arpa/SPARSKIT