Combining individual-based modeling and classical approaches to populations research
Matematičeskoe modelirovanie, Tome 15 (2003) no. 9, pp. 64-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Individual-based modeling is a fast-developing direction in population modeling. The principal difference between individual-based and classical models is in the fact that individual-based model refers to the properties of a single specie directly, and classical models describe population in whole. Traditionally these approaches are opposed to each other. However both of them have certain advantages, and rich experience in both fields has been accumulated. In this work I suggest a new approach, which allows combine these directions to solve actual problems of population modeling. Using this approach one can find the relationship between biological and behavioral characteristics of a specie, and the parameters of analytical models. This is the key to better understanding of the processes that stipulate population dynamics.
@article{MM_2003_15_9_a5,
     author = {P. A. Sorokin},
     title = {Combining individual-based modeling and classical approaches to populations research},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {64--74},
     publisher = {mathdoc},
     volume = {15},
     number = {9},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_9_a5/}
}
TY  - JOUR
AU  - P. A. Sorokin
TI  - Combining individual-based modeling and classical approaches to populations research
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 64
EP  - 74
VL  - 15
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_9_a5/
LA  - ru
ID  - MM_2003_15_9_a5
ER  - 
%0 Journal Article
%A P. A. Sorokin
%T Combining individual-based modeling and classical approaches to populations research
%J Matematičeskoe modelirovanie
%D 2003
%P 64-74
%V 15
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_9_a5/
%G ru
%F MM_2003_15_9_a5
P. A. Sorokin. Combining individual-based modeling and classical approaches to populations research. Matematičeskoe modelirovanie, Tome 15 (2003) no. 9, pp. 64-74. http://geodesic.mathdoc.fr/item/MM_2003_15_9_a5/

[1] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976 | MR

[2] Lotka O., Elements of mathematical biology, NY, 1956 | Zbl

[3] Gauze G. F., “Matematicheskii podkhod k problemam borby za suschestvovanie”, Zool. zhurnal, 12 (1933), 170–177

[4] Kolmogorov A. I., Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii, Nauka, M., 1972; Проблемы кибернетики, 25, 100–106

[5] Forrester Dzh., Mirovaya dinamika, Nauka, M., 1978

[6] DeAngelis D. L., Gross L. J. (eds.), Individual-Based Models and Approaches in Ecology: Populations, Communities and Ecosystems, Chapman and Hall, New York, 1992

[7] Grimm V., “Ten years of individual-based modelling in ecology: what have we learned and what could we learn in the future?”, Ecological Modelling, 115:2–3 (2002), 129–148

[8] Baibikov E. V., Belotelov N. V., Zavyalova S. V. i dr., “O Modelirovanii tundrovykh populyatsii i soobschestv”, Matematicheskoe modelirovanie. Protsessy v slozhnykh ekonomicheskikh i ekologicheskikh sistemakh, Nauka, M., 1986, 207–219 | MR

[9] Orlov V. A., Sarancha D. A, Shelepova O. A., “Matematicheskaya model chislennosti populyatsii lemmingov (Lemmus, Diorostonyx) i ee ispolzovanie dlya opisaniya populyatsii Vostochnogo Taimyra”, Ekologiya, 1986, no. 2, 43–51

[10] Poluektov R. A., Pykh Yu. A., “Dinamika odnolokusnykh poliallelnykh populyatsii. Dinamika neitralnykh populyatsii”, Dinamicheskaya teoriya biologicheskikh populyatsii, Nauka, M., 1974, 241–349

[11] Sarancha D. A., Materialy po kolichestvennoi ekologii. Matematicheskoe modelirovanie i biofizicheskie aspekty, Biomodelirovanie, VTs RAN, M., 1995

[12] Svirezhev Yu. M., Logofet D. O., Ustoichivost biologicheskikh soobschestv, Nauka, M., 1978 | MR

[13] Elton C. S., “Periodic fluctuations in the numbers of animals: their causes and effects”, Brit. J. Exper. Biol., 2 (1924), 119–163

[14] Chernyavskii F. B., Tkachev A. V., Populyatsionnye tsikly lemmingov v Arktike (ekologicheskie i endokrinnye aspekty), Nauka, M., 1982

[15] Sharkovskii A. M., Raznostnye uravneniya i dinamika chislennosti populyatsii, In-t matematiki AN USSR, Kiev, 1982

[16] Sharkovskii A. M., “Suschestvovanie tsiklov nepreryvnogo preobrazovaniya pryamoi v sebya”, Ukr. mat. zhurnal, 16:1 (1964), 61–65