Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2003_15_9_a4, author = {A. S. Nuzhny and S. A. Shumsky}, title = {The {{\CYRV}ayes} regularization in the problem of function of many variables approximation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {55--63}, publisher = {mathdoc}, volume = {15}, number = {9}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2003_15_9_a4/} }
TY - JOUR AU - A. S. Nuzhny AU - S. A. Shumsky TI - The Вayes regularization in the problem of function of many variables approximation JO - Matematičeskoe modelirovanie PY - 2003 SP - 55 EP - 63 VL - 15 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2003_15_9_a4/ LA - ru ID - MM_2003_15_9_a4 ER -
A. S. Nuzhny; S. A. Shumsky. The Вayes regularization in the problem of function of many variables approximation. Matematičeskoe modelirovanie, Tome 15 (2003) no. 9, pp. 55-63. http://geodesic.mathdoc.fr/item/MM_2003_15_9_a4/
[1] David J. C. MacKay, Bayesian Interpolation, Computation and Systems California Institute of Technology 139-74 Pasadena CA91125
[2] F. Girosi, “An equivalence bftween Sparse Approximation and Support Vector Machines”, Neural Computation, 10 (1998), 1455–1480 | DOI
[3] T. Poggio, F. Girosi, “A Sparse Representation for Function Approximation”, Neural Computation, 10:6 (1998), 1445–1454 | DOI | MR
[4] H. Zhu, R. Rohwer, “No free lunch for cross-validation”, Neural Computation, 8 (1996), 1421–1426 | DOI
[5] Radford, Geoffrey E. Hinton, “A view of the EM algorithm that justifies incremental, sparse and other variants”, Learning in Graphical Models, ed. Michael I. Jordan, 1998
[6] M. Werman, D. Keren, “A Bayesian Method for Fitting Parametric and Nonparametric Models to Noisy Data”, IEEE Transactions on PAMI, 23:5 (2001), 528–534
[7] M. L. Vorontsov, A. V. Koryabin, V. I. Shmalgauzen, Upravlyaemye opticheskie sistemy, Nauka, M., 1988
[8] Vapnik V. N., The nature of statistical learning theory, Springer-Verlag, New York, 1995 | MR