Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2003_15_9_a2, author = {V. M. Goloviznin and S. A. Karabasov and I. M. Kobrinskii}, title = {Balance-characteristic schemes with separated conservative and flux variables}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {29--48}, publisher = {mathdoc}, volume = {15}, number = {9}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2003_15_9_a2/} }
TY - JOUR AU - V. M. Goloviznin AU - S. A. Karabasov AU - I. M. Kobrinskii TI - Balance-characteristic schemes with separated conservative and flux variables JO - Matematičeskoe modelirovanie PY - 2003 SP - 29 EP - 48 VL - 15 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2003_15_9_a2/ LA - ru ID - MM_2003_15_9_a2 ER -
%0 Journal Article %A V. M. Goloviznin %A S. A. Karabasov %A I. M. Kobrinskii %T Balance-characteristic schemes with separated conservative and flux variables %J Matematičeskoe modelirovanie %D 2003 %P 29-48 %V 15 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2003_15_9_a2/ %G ru %F MM_2003_15_9_a2
V. M. Goloviznin; S. A. Karabasov; I. M. Kobrinskii. Balance-characteristic schemes with separated conservative and flux variables. Matematičeskoe modelirovanie, Tome 15 (2003) no. 9, pp. 29-48. http://geodesic.mathdoc.fr/item/MM_2003_15_9_a2/
[1] B. L. Rozhdestvenskii, N. N. Yanenko, Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl
[2] J. P. Boris, D. L. Book, K. Hain, “Flux-corrected transport: Generalization of the method”, J. Comput. Physics, 31 (1975), 335–350
[3] Van Leer B., “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, J. Comput. Physics, 32 (1979), 101–137 | DOI | MR
[4] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[5] Harten, S. Osher, “Uniformly high-order accurate non-oscillatory schemes, I”, SIAM. J. Numer. Anal., 24:2 (1987) | DOI | MR | Zbl
[6] Harten, B. Engqist, S. Osher, S. Chakravarthy, “Uniformly High Order Accurate Essentially Non-Oscillatiry Schemes, III”, J. Comput. Physics, 71 (1987), 231–303 | DOI | MR | Zbl
[7] Kolgan V. P., “Konechno-raznostnaya skhema dlya rascheta dvumernykh razryvnykh reshenii nestatsionarnoi gazovoi dinamiki”, Uch. Zap. TsAGI, 3:6 (1972), 68–77
[8] Vyaznikov K. V., Tishkin V. F., Favorskii A. P., Shashkov M. Yu., Kvazimonotonnye raznostnye skhemy povyshennogo poryadka tochnosti, Preprint IPM AN SSSR im. M. V. Keldysha, 1983, No 36, M.
[9] V. M. Goloviznin, A. A. Samarskii, “Raznostnaya approksimatsiya konvektivnogo perenosa s prostranstvennym rasschepleniem vremennoi proizvodnoi”, Matem. modelirovanie, 10:1 (1998), 86–100 | MR
[10] B. M. Goloviznin, A. A. Samarskii, “Nekotorye svoistva raznostnoi skhemy “Kabare””, Matem. modelirovanie, 10:1 (1998), 101–116 | MR
[11] R. Rouch, Vychislitelnaya gidrodinamika, Mir, M., 1976
[12] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl
[13] A. Tolstych, “The response of a variable resolution semi-Lagrangian NWP model to changes in horizontal interpolation”, Q. J. Meteorol. Sos., 122 (1996), 765–778 | DOI
[14] A. Iserles, “Generalized leapfrog methods”, IMA Journal of Numerical Analysis, 6 (1986) | MR
[15] Thomas J. P., Roe P. L., “Development of non-dissipative numerical schemes for computational aeroacoustics”, AIAA, 1995, 3382, 11-th Computational Fluid Dynamics Conference