Bifurcations of the solutions of modified Ginzburg--Landau equation for Josephson junctions
Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 9-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate numerically a class of Josephson contacts with plane boundaries on the basis of modified Ginzburg–Landau (GL) type equations. The corresponding non-linear boundary value problem (BVP) for the amplitude of the order parameter is solved numerically using the continuous analog of Newton method coupled with finite element method. We show, that for fixed values of the phenomenological coefficients of the contact there exist various solutions with different energies and their own phase differences. The resulted supercurrent density – phase offset curves are constructed numerically for different phenomenological coefficients. We show, that each curve consists of three smoothly joined branches corresponding to stable and unstable states of the order parameter's amplitude. The critical Josephson (super) current appears to be a bifurcation value for these states and conforms to the points of confluence of the separated branches. In order to estimate the influence of the phenomenological coefficients on the form of such curves, a Fourier decomposition is made. We show, that due to existence of different nonlinear terms in the equation described the amplitude of the order parameter in $S$ and $N$ regions, the supercurrent density – phase offset dependence is sinusoidal only for restricted domain of values of phenomenological coefficients. In particular, in the case of large difference between the effective masses in $S$ and $N$ regions the availability of the second harmonic is substantial.
@article{MM_2003_15_8_a1,
     author = {T. L. Boyadzhiev},
     title = {Bifurcations of the solutions of modified {Ginzburg--Landau} equation for {Josephson} junctions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {9--20},
     publisher = {mathdoc},
     volume = {15},
     number = {8},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_8_a1/}
}
TY  - JOUR
AU  - T. L. Boyadzhiev
TI  - Bifurcations of the solutions of modified Ginzburg--Landau equation for Josephson junctions
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 9
EP  - 20
VL  - 15
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_8_a1/
LA  - en
ID  - MM_2003_15_8_a1
ER  - 
%0 Journal Article
%A T. L. Boyadzhiev
%T Bifurcations of the solutions of modified Ginzburg--Landau equation for Josephson junctions
%J Matematičeskoe modelirovanie
%D 2003
%P 9-20
%V 15
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_8_a1/
%G en
%F MM_2003_15_8_a1
T. L. Boyadzhiev. Bifurcations of the solutions of modified Ginzburg--Landau equation for Josephson junctions. Matematičeskoe modelirovanie, Tome 15 (2003) no. 8, pp. 9-20. http://geodesic.mathdoc.fr/item/MM_2003_15_8_a1/

[1] Y. Asano, DC Josephson Effect in SNS Junctions of Anisotropic Superconductors, arXiv: /cond-mat/0110085

[2] M. Nishida, N. Hatakenaka, S. Kurihara, Josephson Effect between Condensates with Different Internal Structures, arXiv: /cond-mat/0108368

[3] A. A. Golubov, M. Yu. Kupriyanov, and Ya.V.Fominov, Nonsinusoidal current – phase relation in SFS Josephson junctions, arXiv: /cond-mat/0204568

[4] K. K. Licharev, “Superconducting weak links”, Rev. Mod. Phys., 51 (1979), 101–159 | DOI

[5] J. R. Waldram, “The Josephson effects in weakly coupled superconductors”, Rep. on Prog. in Phys., 39:8 (1976), 751–827 | DOI

[6] F. Sols, J. Ferrer, “Crossover from the Josephson effect to bulk superconducting flow”, Phys. Rev. B, 49 (1994), 15913–15919 | DOI

[7] S. J. Chapman, Q. Du, M. D. Gunzburger, “A Ginzburg–Landau type Model of Supercoducting Normal Junction including Josephson Junctions”, Euro. J. Appl. Math., 6 (1995), 97–114 | DOI | MR | Zbl

[8] Q. Du, M. Gunzburger, J. Peterson, “Solving the Ginzburg–Landau equations by finite-element methods”, Phys. Rev. B, 46 (1992), 9027–9034 | DOI

[9] K. H. Hoffman, L. Jiang, W. Yu, N. Zhu, “Models of Superconducting Normal Superconducting Junctions”, Math. Methods Appl. Sci., 21 (1998), 59–91 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[10] Q. Du, J. Remski, “Simplified models of superconducting-normal-superconducting junctions and their numerical approximations”, Euro. J. Appl. Math., 10 (1999) | MR | Zbl

[11] A. Aftalion, S. J. Chapman, “Asymptotic Analysis of a Secondary Bifurcation of the One-Dimensional Ginzburg–Landau Equations of Superconductivity”, SIAM J. Appl. Math., 60:4 (2000), 1157 | DOI | MR | Zbl

[12] T. L. Boyadjiev, Zh. D. Genchev, “Study of the Modified Ginzburg–Landau Type Equation for a Josephson Junction”, J. Phys. Stud., 5:3 (2001) | MR

[13] E. P. Zhidkov, G. I. Makarenko, I. V. Puzynin, “Continuous analog of the Newton method in non-linear physical problems”, Sov. J. Particles Nucl., 4:1 (1973), 53

[14] T. L. Boyadjiev, Spline-collocation scheme of high order of accuracy, Comm. JINR, Dubna, P2-2002-101

[15] K. J. Bathe, E. Wilson, Numerical Methods in Finite Element Analisis, Prentice Hall, Englewood Cliffs, 1976 | Zbl

[16] T. L. Boyadjiev, D. V. Pavlov, I. V. Puzynin, Comm. JINR, P11-88-409, Dubna, 1988

[17] A. T. Filippov, Yu. S. Ga'pern, T. L. Boyadjiev, I. V. Puzynin, “Critical currents in Josephson junctions with micro inhomogeneities attracting solitons”, Phys. Lett. A, 120:1 (1987), 47 | DOI

[18] I. V. Barashebkov, T. L. Boyadjiev, I. V. Puzynin, T. Zhanlav, “Stability of moving bubbles in a system of interacting bosons”, Phys. Lett. A, 135:2 (1989), 125–128 | DOI

[19] T. L. Boyadjiev, M. D. Todorov, “Minimal Length of Josephson Junctions with Stable Fluxon Bound States”, Supercond. Sci. Technol., 15 (2002), 1–7 | DOI

[20] I. M. Gelfand, S. V. Fomin, Calculus of Variations, Prentice-Hall, Engelwood Cliffs, 1963 | MR

[21] B. M. Levitan, I. S. Sargsjan, Introduction to Spectral Theory, Transl. Math. Monographs, AMS, Providence, RI, 1975 | MR | Zbl

[22] R. K. Bullough, P. J. Caudrey, H. M. Gibbs, Solitons, eds. R. K. Bullough, P. J. Caudrey, Springer-Verlag, NY, 1980 | MR | Zbl

[23] N. Hatakenata, H. Takayanagi, Y. Kasai, S. Tanda, “Double sine-Gordon fluxons in isolated long Josephson junctions”, Physica B, 284–288 (2000), 563–564 | DOI