Influence of dispersed particles on the flow structure in the two-phase wake behind a cylinder at a moderate Reynolds number
Matematičeskoe modelirovanie, Tome 15 (2003) no. 7, pp. 98-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

The effect of solid particles on the structure of the Karman vortex street in the wake of a circular cylinder is investigated numerically. Two-dimensional unsteady flow of compressible gas is described by the complete Navier–Stokes equations with the additional source terms modelling the effect of the particle phase. The dispersed phase is treated as a discrete media, and its motion is described by the kinetic equation. The inter-particle collisions are negligible under the flow conditions considered in the study. In the numerical algorithm, the dispersed phase is represented by a set of simulated particles. The DSMC method is used with assigning different weights to simulated particles depending on their locations in the calculational domain. The Navier–Stokes equations are solved numerically with the use of a finite-difference scheme splitted by physical processes. For visualization of the unsteady carrier gas flow, the massless particle-markers are used. Flow structures of both phases as well as the drag coefficient and the lift force coefficient of a cylinder are studied depending on the free stream particle concentration. It is found that the intensity of vortices in the wake tends to diminish with the particle concentration, the drag coefficient increases and the amplitude of the lift coefficient decreases.
@article{MM_2003_15_7_a12,
     author = {A. N. Volkov and Yu. M. Tsirkunov},
     title = {Influence of dispersed particles on the flow structure in the two-phase wake behind a cylinder at a moderate {Reynolds} number},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {98--110},
     publisher = {mathdoc},
     volume = {15},
     number = {7},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_7_a12/}
}
TY  - JOUR
AU  - A. N. Volkov
AU  - Yu. M. Tsirkunov
TI  - Influence of dispersed particles on the flow structure in the two-phase wake behind a cylinder at a moderate Reynolds number
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 98
EP  - 110
VL  - 15
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_7_a12/
LA  - ru
ID  - MM_2003_15_7_a12
ER  - 
%0 Journal Article
%A A. N. Volkov
%A Yu. M. Tsirkunov
%T Influence of dispersed particles on the flow structure in the two-phase wake behind a cylinder at a moderate Reynolds number
%J Matematičeskoe modelirovanie
%D 2003
%P 98-110
%V 15
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_7_a12/
%G ru
%F MM_2003_15_7_a12
A. N. Volkov; Yu. M. Tsirkunov. Influence of dispersed particles on the flow structure in the two-phase wake behind a cylinder at a moderate Reynolds number. Matematičeskoe modelirovanie, Tome 15 (2003) no. 7, pp. 98-110. http://geodesic.mathdoc.fr/item/MM_2003_15_7_a12/

[1] Zdravkovich M. M., Flow around circular cylinders, V. 1, Oxford University Press, Oxford, 1997 | Zbl

[2] Rogers S. E., Kwak D., “An upwind differencing scheme for the time-accurate incompressible Navier–Stokes equations”, AIAA, 1988, 492–502

[3] Aggarwal S. K., Yapo J. B., Grinstein F. F. Kailasanath K., “Numerical simulation of particle transport in planar shear layers”, Computers and Fluids, 25:1 (1996), 39–59 | DOI | Zbl

[4] Crowe C. T., Troutt T. R., Chung J. N. et al., “A turbulent flow without particle mixing”, Aerosol Science and Technology, 22 (1995), 135–138 | DOI

[5] Volkov A. N., Tsirkunov Yu. M., “Computational simulation of viscous two-phase flows of a dense gas-particle mixture over bodies”, CD-Rom Proc. European Congress on Computational Methods in Applied Sciences and Engineering (Barcelona, 2000), CIMNE, Barcelona, 2000, paper No 309

[6] Zhang H.-Q., Fey U., Noack B. R. et al., “On the transition of the cylinder wake”, Phys. Fluids, 7:4 (1995), 779–794 | DOI

[7] Volkov A. N., Tsirkunov Yu. M., “Kineticheskaya model stolknovitelnoi primesi v zapylennom gaze i ee primenenie k raschetu obtekaniya tel”, Izv. RAN, MZhG, 2000, no. 3, 81–97 | MR | Zbl

[8] Henderson C. B., “Drag coefficients of spheres in continuum and rarefied flows”, AIAA J., 14:6 (1976), 707–708 | DOI

[9] Sternin L. E., Maslov B. N., Shraiber A. A., Podvysotskii A. M., Dvukhfaznye mono- i polidispersnye techeniya gaza s chastitsami, Mashinostroenie, M., 1980

[10] Tsirkunov Yu. M., Panfilov S. V., Klychnikov M. B., “Poluempiricheskaya model udarnogo vzaimodeistviya dispersnoi chastitsy primesi s poverkhnostyu, obtekaemoi potokom gazovzvesi”, IFZh, 67:5–6 (1994), 379–386

[11] Dashkov V. A., “Ob eksperimentalnom opredelenii koeffitsientov vosstanovleniya skorosti chastits potoka gazovzvesi pri udare o poverkhnost”, IFZh, 60:2 (1991), 193–203

[12] Crowe C. T., Sharma M. P., Stock D. E., “The Particle-Source-in-Cell method for gas-droplet flow”, J. Fluids Engr., 99 (1977)

[13] Kiselev S. P., Fomin V. M., “Kontinualno-diskretnaya model dlya smesi gaz-tverdye chastitsy pri maloi ob'emnoi kontsentratsii chastits”, PMTF, 1986, no. 2, 93–101

[14] Yee H. C., Harten A., “Implicit tvd schemes for hyperbolic conservation laws in curvilinear coordinates”, AIAA J., 25:2 (1987), 266–274 | DOI

[15] MacCormack R. W., “The effect of viscosity in hypervelocity impact cratering”, AIAA, 1969, 354

[16] Volkov A. N., Tsirkunov Yu. M., “Aerodynamic interference of two cylindes in the flow at a moderate free stream Reynolds number”, Proc. Fifth world congress on computational mechanics, Vienna, 2002; http://wccm.tuwien.ac.at/

[17] Van Dyke M., An album of fluid motion, Parabolic Press, Stanford, 1982