Dirichlet cells in the shortest-path metric
Matematičeskoe modelirovanie, Tome 15 (2003) no. 5, pp. 71-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a new approach to the problems of construction of constrained Delaunay triangulations and Dirichlet cells for arbitrary constraint configurations. A metric equal to the length of the shortest boundary-conforming path between two points is introduced. Dirichlet cells in the new metric resemble classical cells, while taking into account point visibility through the constraints. We prove statements that precisely describe the form of these cells.
@article{MM_2003_15_5_a8,
     author = {K. L. Bogomolov and V. F. Tishkin},
     title = {Dirichlet cells in the shortest-path metric},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {71--79},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_5_a8/}
}
TY  - JOUR
AU  - K. L. Bogomolov
AU  - V. F. Tishkin
TI  - Dirichlet cells in the shortest-path metric
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 71
EP  - 79
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_5_a8/
LA  - ru
ID  - MM_2003_15_5_a8
ER  - 
%0 Journal Article
%A K. L. Bogomolov
%A V. F. Tishkin
%T Dirichlet cells in the shortest-path metric
%J Matematičeskoe modelirovanie
%D 2003
%P 71-79
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_5_a8/
%G ru
%F MM_2003_15_5_a8
K. L. Bogomolov; V. F. Tishkin. Dirichlet cells in the shortest-path metric. Matematičeskoe modelirovanie, Tome 15 (2003) no. 5, pp. 71-79. http://geodesic.mathdoc.fr/item/MM_2003_15_5_a8/

[1] Timothy J. Baker, Delaunay–Voronon methods, Handbook of Grid Generation, chapter 16, CRC Press, 1999

[2] Jim Ruppert, “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation”, J. of Algorithms, 18:3 (1995), 548–585 | DOI | MR | Zbl

[3] Michael Murphy, David M. Mount, Carl W. Gable, “A Point-Placement Strategy for Conforming Delaunay Tetrahedralization”, International Journal of Computational Geometry and Applications, 11:6 (2001), 669–682 | DOI | MR | Zbl

[4] Jonathan Richard Shewchuk, “A Condition Guaranteeing the Existence of Higher-Dimensional Constrained Delaunay Triangulations”, Proceedings of the Fourteenth Annual Symposium on Computational Geometry, Association for Computing Machinery, Minneapolis, Minnesota, 1998, 76–85

[5] C. Bradford Barber, David P. Dobkin, Hannu Huhdanpaa, “The Quickhull Algorithm for Convex Hulls”, ACM Transactions on Mathematical Software, 22:4 (1996), 469–483 ; http://tacm.org/pubs/toc/Abstracts/tQms/235821.html | DOI | MR | Zbl

[6] Jonathan Richard Shewchuk, “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator”, First Workshop on Applied Computational Geometry (Philadelphia, Pennsylvania), Association for Computing Machinery, 1996, 124–133

[7] Watson D. F., “Computing the $n$-dimensional Delaunay Tessellation with Application to Voronoi polytopes”, The Computer Journal, 24:2 (1981), 167–172 | DOI | MR