Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2003_15_5_a8, author = {K. L. Bogomolov and V. F. Tishkin}, title = {Dirichlet cells in the shortest-path metric}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {71--79}, publisher = {mathdoc}, volume = {15}, number = {5}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2003_15_5_a8/} }
K. L. Bogomolov; V. F. Tishkin. Dirichlet cells in the shortest-path metric. Matematičeskoe modelirovanie, Tome 15 (2003) no. 5, pp. 71-79. http://geodesic.mathdoc.fr/item/MM_2003_15_5_a8/
[1] Timothy J. Baker, Delaunay–Voronon methods, Handbook of Grid Generation, chapter 16, CRC Press, 1999
[2] Jim Ruppert, “A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation”, J. of Algorithms, 18:3 (1995), 548–585 | DOI | MR | Zbl
[3] Michael Murphy, David M. Mount, Carl W. Gable, “A Point-Placement Strategy for Conforming Delaunay Tetrahedralization”, International Journal of Computational Geometry and Applications, 11:6 (2001), 669–682 | DOI | MR | Zbl
[4] Jonathan Richard Shewchuk, “A Condition Guaranteeing the Existence of Higher-Dimensional Constrained Delaunay Triangulations”, Proceedings of the Fourteenth Annual Symposium on Computational Geometry, Association for Computing Machinery, Minneapolis, Minnesota, 1998, 76–85
[5] C. Bradford Barber, David P. Dobkin, Hannu Huhdanpaa, “The Quickhull Algorithm for Convex Hulls”, ACM Transactions on Mathematical Software, 22:4 (1996), 469–483 ; http://tacm.org/pubs/toc/Abstracts/tQms/235821.html | DOI | MR | Zbl
[6] Jonathan Richard Shewchuk, “Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator”, First Workshop on Applied Computational Geometry (Philadelphia, Pennsylvania), Association for Computing Machinery, 1996, 124–133
[7] Watson D. F., “Computing the $n$-dimensional Delaunay Tessellation with Application to Voronoi polytopes”, The Computer Journal, 24:2 (1981), 167–172 | DOI | MR