Duality method for estimation of puncture conditions of dielectrics
Matematičeskoe modelirovanie, Tome 15 (2003) no. 5, pp. 106-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

The limit analysis problem (LAP) for estimation of electrical durability for a dielectric in powerful electric field is examined. The appropriate dual problem is formulated. After the standard piecewise linear continuous FEA the dual LAP is transformed into the problem of mathematical programming with linear limitations as equalities. This finite dimension problem is effectively solved by the standard method of projection of gradient. The numerical results show that the proposed method has the qualitative advantage over standard techniques of estimation of puncture conditions. This method is perspective in Electrical Engineering.
@article{MM_2003_15_5_a11,
     author = {I. A. Brigadnov},
     title = {Duality method for estimation of puncture conditions of dielectrics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {106--114},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_5_a11/}
}
TY  - JOUR
AU  - I. A. Brigadnov
TI  - Duality method for estimation of puncture conditions of dielectrics
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 106
EP  - 114
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_5_a11/
LA  - ru
ID  - MM_2003_15_5_a11
ER  - 
%0 Journal Article
%A I. A. Brigadnov
%T Duality method for estimation of puncture conditions of dielectrics
%J Matematičeskoe modelirovanie
%D 2003
%P 106-114
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_5_a11/
%G ru
%F MM_2003_15_5_a11
I. A. Brigadnov. Duality method for estimation of puncture conditions of dielectrics. Matematičeskoe modelirovanie, Tome 15 (2003) no. 5, pp. 106-114. http://geodesic.mathdoc.fr/item/MM_2003_15_5_a11/

[1] I. E. Tamm, Osnovy teorii elektrichestva, Nauka, M., 1989

[2] G. Dyuvo, Zh.-L. Lions, Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[3] V. Braun, Dielektriki, IL, M., 1961

[4] I. S. Rez, Yu. M. Poplavko, Dielektriki. Osnovnye svoistva i primenenie v elektronike, Radio i svyaz, M., 1989

[5] V. P. Kazantsev, Analiticheskaya elektrostatika, Ucheb. posobie. 4.1. Variatsionnye printsipy i prostye primery ikh ispolzovaniya, KGU, Krasnoyarsk, 1989

[6] R. Temam, Matematicheskie zadachi teorii plastichnosti, Nauka, M., 1991 | MR | Zbl

[7] I. A. Brigadnov, “O suschestvovanii predelnoi nagruzki v nekotorykh zadachakh giperuprugosti”, Izv. RAN. MTT, 1993, no. 5, 46–51

[8] I. A. Brigadnov, “O matematicheskoi korrektnosti kraevykh zadach elastostatiki dlya giperuprugikh materialov”, Izv. RAN. MTT, 1996, no. 6, 37–46

[9] I. A. Brigadnov, “The limited static load in finite elasticity”, Constitutive Models for Rubber, eds. Al Dorfmann, A. Muhr, A. A. Balkema, Rotterdam, 1999, 37–43

[10] I. A. Brigadnov, “Otsenka nesuschei sposobnosti nelineino uprugikh tel”, Izv. RAN. MTT, 2001, no. 1, 6–15

[11] A. A. Vorobev, G. A. Vorobev, Elektricheskii proboi i razrushenie tverdykh dielektrikov, Vysshaya shkola, M., 1965

[12] Yu. N. Vershinin, Elektricheskii proboi tverdykh dielektrikov. Osnovy fenomenologicheskoi teorii i ee tekhnicheskie prilozheniya, Nauka SO, Novosibirsk, 1968

[13] A. A. Chiras, Stroitelnaya mekhanika. Teoriya i algoritmy, Stroiizdat, M., 1989

[14] Ya. A. Kamenyarzh, Predelnyi analiz plasticheskikh tel i konstruktsii, Nauka, M., 1997 | MR | Zbl

[15] I. A. Brigadnov, “Numerical analysis of dielectrics in powerful electrical fields”, Computer Assisted Mech. and Eng. Sci., 2001, no. 4, 12–24

[16] I. A. Brigadnov, “Variatsionno-raznostnyi metod otsenki proboinoi prochnosti dielektrikov”, Matem. modelirovanie, 14:4 (2002), 57–66 | MR | Zbl

[17] E. Dzhusti, Minimalnye poverkhnosti i funktsii ogranichennoi variatsii, Mir, M., 1989 | MR

[18] Brigadnov L. A., “Discontinuous solutions and their finite element approximation in non-linear elasticity”, Advanced Computational Methods in Engineering, eds. R. Van Keer, B. Verhegghe, M. Hogge, E. Noldus, Shaker Publishing B. V., Maastricht, 1998, 141–148

[19] Brigadnov I. A., “Razryvnye otobrazheniya i ikh approksimatsiya v nelineinoi teorii uprugosti”, Izv. RAN. MTT, 2001, no. 2, 42–53

[20] A. Kufner, S. Fuchik, Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR

[21] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye zadachi, Mir, M., 1979 | MR

[22] N. V. Banichuk, Vvedenie v optimizatsiyu konstruktsii, Nauka, M., 1986 | MR

[23] F. Syarle, Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[24] V. G. Karmanov, Matematicheskoe programmirovanie, Nauka, M., 1986 | MR

[25] N. N. Moiseev, Yu. P. Ivanilov, E. M. Stolyarova, Metody optimizatsii, Nauka, M., 1978