Individual-based model for dynamics of infection in nonhomogeneous population
Matematičeskoe modelirovanie, Tome 15 (2003) no. 5, pp. 95-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of immune system adaptation is suggested. The energy cost of immunity defense processes is applied as a measure of immune system effectiveness. Estimation of effectiveness is carried out by means of an evolution algorithm that describes the spread of a pathogen in a host population and infectious disease in individuals. The model allows to investigate the patterns of the adaptation process of the immune system to environment factors. In particular the model describes the evolution of energy partitioning between infection immunity and reproduction.
@article{MM_2003_15_5_a10,
     author = {A. A. Romanyukha and A. S. Karkach},
     title = {Individual-based model for dynamics of infection in nonhomogeneous population},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--105},
     publisher = {mathdoc},
     volume = {15},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_5_a10/}
}
TY  - JOUR
AU  - A. A. Romanyukha
AU  - A. S. Karkach
TI  - Individual-based model for dynamics of infection in nonhomogeneous population
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 95
EP  - 105
VL  - 15
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_5_a10/
LA  - ru
ID  - MM_2003_15_5_a10
ER  - 
%0 Journal Article
%A A. A. Romanyukha
%A A. S. Karkach
%T Individual-based model for dynamics of infection in nonhomogeneous population
%J Matematičeskoe modelirovanie
%D 2003
%P 95-105
%V 15
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_5_a10/
%G ru
%F MM_2003_15_5_a10
A. A. Romanyukha; A. S. Karkach. Individual-based model for dynamics of infection in nonhomogeneous population. Matematičeskoe modelirovanie, Tome 15 (2003) no. 5, pp. 95-105. http://geodesic.mathdoc.fr/item/MM_2003_15_5_a10/

[1] Vorontsov N. N., Razvitie evolyutsionnykh idei v biologii, Izdat. otdel UNTs DO MGU, Progress-Traditsiya, ABF, M., 1999

[2] Marchuk G. I., Matematicheskie modeli v immunologii, 3 izd., Nauka, M., 1991 | MR

[3] U. Pol (red.), Immunologiya, t. 1–3, Mir, M., 1987–1989

[4] Karkach A. S., Sannikova T. E., Romanyukha A. A., “Matematicheskoe modelirovanie adaptatsii immunnoi sistemy”, Vychislitelnaya matematika i matematicheskoe modelirovanie, Trudy mezhdunarodnoi konferentsii, IVM RAN, M., 2000, 160–188

[5] Roit A., Osnovy immunologii, Mir, M., 1991

[6] Romanyukha A. A., “Energeticheskaya tsena protivoinfektsionnoi zaschity organizma. Evolyutsionnyi podkhod k analizu dannykh i modelirovaniyu”, Tezisy dokladov. Vtoroi Sibirskii kongress po prikladnoi i industrialnoi matematike (INPRIM-96), Novosibirsk, 1996, 44

[7] Romanyukha A. A., Rudnev S. G., “Variatsionnyi printsip v issledovanii protivoinfektsionnogo immuniteta na primere pnevmonii”, Matem. modelirovanie, 13:8 (2001), 65–84 | Zbl

[8] Anderson R. M., May R. M., “Population biology of infectious diseases: Part 1”, Nature, 280:2 (1979), 361–367 | DOI | MR

[9] Keusch G. T., “Infection. Nutritional Interactions”, Encyclopedia of Human Nutrition, 2, ed. Sadler M. J., Academic Press, San Diego, 1999, 1117–1121

[10] Kooijman S. A. L. M., Dynamic energy and mass budgets in biological systems, Cambridge University Press, Cambridge, 2000

[11] Shetty P. S., “Energy Requirements”, Encyclopedia of Human Nutrition, 2, ed. Sadler M. J., Academic Press, San Diego, 1999, 645–650

[12] Stearns S. C., Evolution in health and disease, Oxford University Press, New York, 1999

[13] Stearns S. C., The evolution of life histories, Oxford University Press, Oxford, 1999

[14] James F., Roos M., “MINUIT – a system for function minimization and analysis of the parameters errors and correlations”, Comp. Phys. Communications, 10 (1975), 343–367 | DOI