Finite elements method for boundary problems solution of incompessible liquid regularized solutions in ``speeds-pressure'' variables
Matematičeskoe modelirovanie, Tome 15 (2003) no. 3, pp. 15-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MM_2003_15_3_a1,
     author = {P. K. Volkov and A. V. Pereverzev},
     title = {Finite elements method for boundary problems solution of incompessible liquid regularized solutions in ``speeds-pressure'' variables},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {15--28},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_3_a1/}
}
TY  - JOUR
AU  - P. K. Volkov
AU  - A. V. Pereverzev
TI  - Finite elements method for boundary problems solution of incompessible liquid regularized solutions in ``speeds-pressure'' variables
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 15
EP  - 28
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_3_a1/
LA  - ru
ID  - MM_2003_15_3_a1
ER  - 
%0 Journal Article
%A P. K. Volkov
%A A. V. Pereverzev
%T Finite elements method for boundary problems solution of incompessible liquid regularized solutions in ``speeds-pressure'' variables
%J Matematičeskoe modelirovanie
%D 2003
%P 15-28
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_3_a1/
%G ru
%F MM_2003_15_3_a1
P. K. Volkov; A. V. Pereverzev. Finite elements method for boundary problems solution of incompessible liquid regularized solutions in ``speeds-pressure'' variables. Matematičeskoe modelirovanie, Tome 15 (2003) no. 3, pp. 15-28. http://geodesic.mathdoc.fr/item/MM_2003_15_3_a1/

[1] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[2] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[3] P. Rouch, Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl

[4] V. I. Polezhaev, V. L. Gryaznov, “Metod rascheta granichnykh uslovii dlya uravnenii Nave–Stoksa v peremennykh “vikhr, funktsiya toka””, DAN SSSR, 219:2 (1974), 301–304 | Zbl

[5] O. S. Mazhorova, M. P. Marchenko, I.V.Fryazinov, “Monotoniziruyuschie regulyarizatory i matrichnyi metod resheniya uravnenii Nave–Stoksa dlya neszhimaemoi zhidkosti”, Matem. modelirovanie, 6:12 (1994), 97–116 | MR | Zbl

[6] N. V. Nikitin, V. I. Polezhaev, “Trekhmernaya konvektivnaya neustoichivost i temperaturnye kolebaniya v metode Chokhralskogo”, Izvestiya RAN, MZhG, 1999, no. 3, 26–38

[7] P. N. Vabischevich, A. N. Pavlov, A. G. Churbanov, “Metody raschety nestatsionarnykh neszhimaemykh techenii v estestvennykh peremennykh na neraznesennykh setkakh”, Matem. modelirovanie, 8:7 (1996), 81–108 | MR | Zbl

[8] P. N. Vabischevich, A. N. Pavlov, A. G. Churbanov, “Chislennye metody resheniya nestatsionarnykh uravnenii Nave–Stoksa v estestvennykh peremennykh na chastichno raznesennykh setkakh”, Matem. modelirovanie, 9:4 (1997), 85–114 | MR | Zbl

[9] C. I. Christov, R. S. Marinova, “Implicit vectorial operator splitting for incompressible Navier–Stokes equations in primitive variables”, Computational Technologies, 6:4 (2001), 81–108 | MR

[10] P. K. Volkov, V. A. Pereverzev, “Kachestvennye razlichiya v dinamike izotermicheskikh zhidkostei v zemnykh i kosmicheskikh usloviyakh”, Trudy regionalnogo konkursa nauchnykh proektov v oblasti estestvennykh nauk, vyp. 2, Eidos, Kaluga, 2001, 52–70

[11] B. G. Kuznetsov, “Ob odnom sposobe approksimatsii uravnenii gidrodinamiki vyazkoi neszhimaemoi zhidkosti”, DAN, 213:1 (1973) | Zbl

[12] Sh. Smagulov, “Ob odnom nelineinom uravnenii s malym parametrom, approksimiruyuschem uravnenie Nave–Stoksa”, Trudy V Vsesoyuznogo seminara po chislennym metodam mekhaniki vyazkoi zhidkosti, Ch. 1, VTs SO AN SSSR, Novosibirsk, 1975, 123–134 | MR

[13] R. Temam, “Une methode d'approximation de Ja Solution des equationse Navier–Stokes”, Bull. Soc. Mathem. De France, 96 (1968), 115–152 | MR | Zbl

[14] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984 | MR

[15] B. V. Alexeev, “The generalized Boltzmann equation, generalized hydrodynamic equations and their applications”, Phil. Trans. Roy. Soc. London A, 349 (1994), 417–443 | DOI | MR | Zbl

[16] A. I. Fedoseyev, “A regularization approach to solving boundary layer problems for Navier–Stokes equations”, Computational Fluid Dynamics Journal, 9:1 (2000)

[17] O. Zenkevich, Metod konechnykh elementov v tekhnike, Mir, M., 1975

[18] L. Segerlind, Primenenie metoda konechnykh elementov, Mir, M., 1979

[19] V. I. Polezhaev, A. V. Bune, N. A. Verozub i dr., Matematicheskoe modelirovanie konvektivnogo teplomassoobmena na osnove uravnenii Nave–Stoksa, Nauka, M., 1987 | MR

[20] P. K. Volkov, A. V. Pereverzev, “Nelineinaya dinamika neizotermicheskikh zhidkostei v zemnykh i kosmicheskikh usloviyakh”, Trudy regionalnogo konkursa nauchnykh proektov v oblasti estestvennykh nauk, Vyp. 1, Eidos, Kaluga, 2000, 11–24

[21] A. I. Fedoseev, O. A. Bessonov, “Effektivnyi podkhod k resheniyu zadach mekhaniki vyazkoi zhidkosti v metode konechnykh elementov”, Chislennye metody v zadachakh teplo- i massoobmena, IPMekh.RAN, M., 1997, 67–86

[22] K. R. Koseff, R. L. Street, “The Lid-Driven cavity flow: A synthesis of qualitative and quantitative observations”, Trans. ASME J. Fluids Engng., 106 (1984), 390–398 | DOI

[23] O. Botella, R. Peyret, “Benchmark spectral results on the Lid-Driven cavity flow”, Computer and Fluids, 27:4 (1998), 421 | DOI | MR | Zbl

[24] S. V. Patankar, D. B. Spolding, Teplo-massoobmen v pogranichnykh sloyakh, Energiya, M., 1971

[25] Kh. Miloshevich, A. D. Rychkov, Yu. I. Shokin, Modelirovanie struinykh techenii v staleplavilnykh konvertorakh, Izd-vo SO RAN, Novosibirsk, 2000

[26] S. Thakur, W. Shyy, “Some implementional issue of convection schemes for finite-volume formulations”, Numer. Heat Transfer, 24 (1993), 31–55 | DOI

[27] B. P. Leonard, “A stable and accurate conservative modeling procedure based on quadratic upstream interpolation”, Comp. Meth. Appl. Mech. Engng., 19 (1979), 59–98 | DOI | Zbl

[28] W. H. Leong, K. G. T. Hollands, A. P. Brunger, “Experimental Nuuselt Number for a Cubical-cavity Benchmark Problem in Natural Convection”, Int. J. Heat Mass Transfer, 42 (1999), 1979–1989 | DOI

[29] V. Ginkin, “Algorithm of Solution of 3-D Magnetic Hydrodynamic Equations for crystal Growth Problem”, Single Crystal Growth and Heat and Mass Transfer (ICSC-01), Proceedings of the Fourth International Conference, v. 4 (Obninsk, SSC RF IPPE, 2001), 792–807

[30] C. Xia, J. Y. Murthy, S. R. Marthur, “Finite Volume Computations of Buoyancy-Driven Flow in a Cubical Cavity: A Benchmarking Exercise”, ICHMT 2-nd Int. Symp. On Adv. In Comput. Heat Transfer (Palm Cove, Quennsland, Australia, May 20–25, 2001), 1345–1350

[31] S. Kejeres, S. B. Gunarjo, K. Hanjalic, “Natural Convection in an Air-Filled Cubical Cavity Under Different Angles of Inclination: A Benchmark Study”, ICHMT 2-nd Int. Symp. On Adv. In Comput. Heat Transfer, V. 2 (Palm Cove, Quennsland, Australia, May 20–25, 2001), 1357–1364