Precise cold compression curve for copper
Matematičeskoe modelirovanie, Tome 15 (2003) no. 1, pp. 29-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The precise curve was constructed for cold pressure dependence on dencity for copper. It is in a good agreement with theoretical data of the Thomas-Fermi model with quantum and exchange corrections when compressions exeed 60-fold, and with static and shock-wave experiments when compressions are less than 2.4. Accuracy of this curve is estimated as 1–2% in pressure at given density in the whole region $0$. Comparison with all previously known curves shows that their maximum errors are from 8% up to 25% for different authors. Our curve is about 10 times more accurate, so it can be the standard.
@article{MM_2003_15_1_a2,
     author = {N. N. Kalitkin and L. V. Kuzmina},
     title = {Precise cold compression curve for copper},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_1_a2/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - L. V. Kuzmina
TI  - Precise cold compression curve for copper
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 29
EP  - 36
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_1_a2/
LA  - ru
ID  - MM_2003_15_1_a2
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A L. V. Kuzmina
%T Precise cold compression curve for copper
%J Matematičeskoe modelirovanie
%D 2003
%P 29-36
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_1_a2/
%G ru
%F MM_2003_15_1_a2
N. N. Kalitkin; L. V. Kuzmina. Precise cold compression curve for copper. Matematičeskoe modelirovanie, Tome 15 (2003) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/MM_2003_15_1_a2/

[1] R. Latter, “Thomas-Fermi model of compressed atom”, J. Chem. Phys., 24:2 (1956), 280 | DOI

[2] N. N. Kalitkin, “Model atoma Tomasa–Fermi s kvantovymi i obmennymi popravkami”, ZhETF, 38:5 (1960), 1534–1540 | MR

[3] L. V. Altshuler, A. A. Bakanova, R. F. Trunin, “Udarnye adiabaty i nulevye izotermy semi metallov pri vysokikh davleniyakh”, ZhETF, 42:1 (1962), 91 | MR

[4] N. N. Kalitkin, I. A. Govorukhina, “Interpolyatsionnye formuly kholodnogo szhatiya veschestv”, FTT, 7:2 (1965), 355–362 | MR

[5] L. V. Altshuler, S. E. Brusnikin, “Uravneniya sostoyaniya szhatykh i nagretykh metallov”, TVT, 27:1 (1989), 42–51

[6] E. A. Kuzmenkov, “Kompozitsionnye poluempiricheskie uravneniya sostoyaniya szhatykh metallov”, Izvestiya SO AN, tekhnich. nauki, 1989, no. 6, 106–112

[7] M. van Thiel (ed.), Compendium of shock wave data, Univ. Calif. Press, Livermore, 1977

[8] S. P. Marsh (ed.), LASL shock Hugoniot data, Univ. Calif. Press, Berkley, 1980

[9] R. F. Trunin (ed.), Svoistva kondensirovannykh veschestv pri vysokikh davleniyakh i temperaturakh, Arzamas-16, 1992

[10] N. N. Kalitkin, L. V. Kuzmina, “Med kak udarno-volnovoi standart”, Dokl. RAN, 360:2 (1998), 182–185

[11] N. N. Kalitkin, L. V. Kuzmina, “Pretsizionnye shirokodiapazonnye udarnye adiabaty metallov”, Dokl. RAN, 368:2 (1999), 178–180 | MR

[12] P. V. Bridzhmen, Fizika vysokikh davlenii, M., 1935; P. W. Bridgman, Proc. Am. Acad., 76:6 (1949), 189

[13] H. K. Mao, P. M. Bell, J. W. Shatter, D. J. Steinberg, “Specific volume measurements of Cu, Mo, Pd and Ag, and calibration of the ruby $R_1$ fluorescence pressure gauge from 0.06 to 1 Mbar”, J. Appl. Phys., 49:6 (1978), 3276–3283 | DOI

[14] L. V. Altshuler, S. B. Kormer, A. A. Bakanova, R. F. Trunin, “Uravnenie sostoyaniya alyuminiya, medi i svintsa dlya oblasti vysokikh davlenii”, ZhETF, 38:3 (1960), 790–798

[15] L. V. Altshuler, S. E. Brusnikin, E. A. Kuzmenkov, “Izotermy i funktsii Gryunaizena 25 metallov”, PMTF, 1987, no. 1, 134–146 | MR

[16] W. J. Nellis, J. A. Moriarty, A. C. Mitchell et al., “Metall physics at ultrahigh pressure: aluminium, copper and lead as prototypes”, Phys. Rev. Lett., 60:14 (1988), 1414–1417 | DOI