Comparison of two mathematical models for spatial phenomena of the blood coagulation
Matematičeskoe modelirovanie, Tome 15 (2003) no. 1, pp. 14-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compare two mathematical models of blood coagulation dynamics. It was shown that there is a similarity of observed dynamical regimes and the character of transition between them in spite of different presuppositions under models construction. Both models propose several scenarios for formation of stratified thrombus that was previously registered experimentally. The possible biophysical significance of obtained results is discussed.
@article{MM_2003_15_1_a1,
     author = {A. I. Lobanov and T. K. Starogilova and V. I. Zarnitsina and F. I. Ataullakhanov},
     title = {Comparison of two mathematical models for spatial phenomena of the blood coagulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {14--28},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_1_a1/}
}
TY  - JOUR
AU  - A. I. Lobanov
AU  - T. K. Starogilova
AU  - V. I. Zarnitsina
AU  - F. I. Ataullakhanov
TI  - Comparison of two mathematical models for spatial phenomena of the blood coagulation
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 14
EP  - 28
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_1_a1/
LA  - ru
ID  - MM_2003_15_1_a1
ER  - 
%0 Journal Article
%A A. I. Lobanov
%A T. K. Starogilova
%A V. I. Zarnitsina
%A F. I. Ataullakhanov
%T Comparison of two mathematical models for spatial phenomena of the blood coagulation
%J Matematičeskoe modelirovanie
%D 2003
%P 14-28
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_1_a1/
%G ru
%F MM_2003_15_1_a1
A. I. Lobanov; T. K. Starogilova; V. I. Zarnitsina; F. I. Ataullakhanov. Comparison of two mathematical models for spatial phenomena of the blood coagulation. Matematičeskoe modelirovanie, Tome 15 (2003) no. 1, pp. 14-28. http://geodesic.mathdoc.fr/item/MM_2003_15_1_a1/

[1] S. N. Levin, “Enzyme amplifier kinetics”, Science, 152(3722) (1966), 651–653 | DOI

[2] R. G. Macfarlane, “An enzyme cascade in the blood clotting mechanism, and its function as a biochemical amplifier”, Nature, 202(4931) (1964), 498–499 | DOI

[3] M. A. Khanin, V. V. Semenov, “A mathematical model of the kinetics of blood coagulation”, J. Theor. Biol., 136 (1989), 127–134 | DOI | MR

[4] G. M. Willems, T. Lindhout, H. Coenraad, W. T. Hermens, H. C. Hemker, “Simulation model for thrombin generation in plasma”, Haemostasis, 21 (1991), 197–207 | MR

[5] H. Kessels, G. M. Willems, H. C. Hemker, “Analysis of trombin generation in plasma”, Comput. Biol. Med., 24 (1994), 277–288 | DOI

[6] C. J. Jones, K. G. Mann, “A model for the tissue factor pathway to thrombin. II: A mathematical simulation”, J. Biol. Chem., 269:37 (1994), 23367–23373

[7] F. I. Ataullakhanov, G. T. Guriya, “Prostranstvennye aspekty dinamiki svertyvaniya krovi. I: Gipoteza”, Biofizika, 39:1 (1994), 87–96

[8] V. I. Zarnitsina, A. V. Pokhilko, F. I. Ataullakhanov, “A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. I: The model description”, Thrombosis Research, 84:4 (1996), 225–236 | DOI

[9] V. I. Zarnitsina, A. V. Pokhilko, F. I. Ataullakhanov, “A mathematical model for the spatio-temporal dynamics of intrinsic pathway of blood coagulation. II: Results”, Thrombosis Research, 84:5 (1996), 333–344 | DOI

[10] Yu. A. Barynin, I. A. Starkov, M. A. Khanin, “Matematicheskie modeli fiziologii gemostaza”, Izv. AN Seriya biologicheskaya, 1999, no. 1, 59–66

[11] F. I. Ataullakhanov, R. I. Volkova, G. T. Guriya, V. M. Sarbash, “Prostranstvennye aspekty dinamiki svertyvaniya krovi. III: Rost tromba in vitro”, Biofizika, 40:6 (1994), 1320–1328

[12] F. I. Ataullakhanov, G. T. Guria, V. I. Sarbash, R. I. Volkova, “Spatio-temporal dynamics of clotting and pattern formation in human blood”, Biochimica et Biophysica Acta, 1425 (1998), 453–468

[13] E. I. Sinauridze, R. I. Volkova, Yu. V. Krasotkina, V. I. Sarbash, F. I. Ataullakhanov, “Dynamics of clot growth induced by thrombin diffusion into nonstirred citrate human plasma”, Biochimica et Biophysica Acta, 1425 (1998), 607–616

[14] F. I. Ataullakhanov, G. T. Guriya, A. Yu. Safroshkina, “Prostranstvennye aspekty dinamiki svertyvaniya krovi. II: Fenomenologicheskaya model”, Biofizika, 39:1 (1994), 97–104

[15] T. K. Starozhilova, A. I. Lobanov, G. T. Guriya, “Chislennoe issledovanie obrazovaniya dvumernykh struktur v modeli vozbudimoi sredy s aktivnym vosstanovleniem”, Matem. modelirovanie, 9:2 (1997), 21–24 | MR | Zbl

[16] A. I. Lobanov, T. K. Starozhilova, G. T. Guriya, “Chislennoe issledovanie strukturoobrazovaniya pri svertyvanii krovi”, Matem. modelirovanie, 9:8 (1997), 83–95 | MR | Zbl

[17] G. T. Guriya, A. I. Lobanov, T. K. Starozhilova, “Formirovanie aksialno-simmetrichnykh struktur v vozbudimykh sredakh s aktivnym vosstanovleniem”, Biofizika, 43:3 (1998), 526–534

[18] A. M. Lobanov, T. K. Starozhilova, “Kachestvennoe issledovanie nachalnogo etapa formirovaniya neravnovesnykh struktur v modeli tipa “reaktsiya-diffuziya””, Matem. modelirovanie, 9:12 (1997), 3–15 | MR | Zbl

[19] A. I. Lobanov, T. K. Starozhilova, A. P. Chernyaev, “Rezonansnye yavleniya v sistemakh tipa “reaktsiya-diffuziya””, Matem. modelirovanie, 11:7 (1999), 75–82 | MR

[20] A. L. Chulichkov, A. V. Nikolaev, A. I. Lobanov, G. T. Guriya, “Porogovaya aktivatsiya svertyvaniya krovi i rost tromba v usloviyakh krovotoka”, Matem. modelirovanie, 12:3 (2000), 75–96 | Zbl

[21] A. P. Guzevatykh, A. I. Lobanov, G. T. Guriya, “Matematicheskoe modelirovanie aktivatsii vnutrisosudistogo tromboobrazovaniya vsledstvie razvitiya stenoza”, Matem. modelirovanie, 12:4 (2000), 39–60 | Zbl

[22] D. T. Berg, M. R. Wileyand, B. W. Grinnell, “Enhanced protein $C$ activation and inhibition of fibrinogen cleavage by a thrombin modulator”, Science, 273 (1996), 1389–1391 | DOI

[23] Q. D. Dang, A. Vindigni, E. Di Cera, “Identification of residues linked to the slow-fast transition of thrombin”, Proc. Natl. Acad. Sci. USA, 92 (1995), 11185–11189 | DOI

[24] V. I. Zarnitsina, F. I. Ataullakhanov, A. I. Lobanov, O. L. Morozova, “Dynamics of stationary spatial-nonuniform patterning in the model of blood coagulation”, Chaos. Interdisciplinary Journal of Nonlinear Sciences, 11:1 (2001), 57–70 | DOI | Zbl

[25] A. L. Kuharsky, A. L. Fogel, “Surfase-mediated control of blood coagulation: the role of binding site densities and platelet deposition”, Biophysical J., 80:3 (2001), 1050–1074 | DOI

[26] T. K. Starozhilova, Matematicheskoe modelirovanie avtovolnovykh protsessov i dissipativnykh struktur v biologicheskikh sistemakh, diss. k.f.-m.n., M., 2000

[27] V. A. Vasilev, Yu. M. Romanovskii, V. G. Yakhno, Avtovolnovye protsessy, Nauka, M., 1987

[28] C. Heidemann, M. Bode, H.-G. Purwins, “Fronts between Hopf- and Turing-type domains in a two component reaction-diffusion system”, Physics Letters A, 177:3 (1993), 225–230 | DOI

[29] F. I. Ataullakhanov, V. I. Zarnitsina, A. V. Pokhilko, A. I. Lobanov, O. L. Morozova, “Spatio-temporal dynamics of blood coagulation and pattern formation. A theoretical approach”, International Journal of Bifurcations and Chaos, 2001, in press | MR | Zbl