Monotonic difference schemes for transfer equation in plane layer
Matematičeskoe modelirovanie, Tome 15 (2003) no. 1, pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

New finite-difference weighted schemes for the transport equation in plane-parallel geometry $$ LN(x,\mu)\equiv\mu\frac{\partial N(x,\mu)}{\partial x}+\alpha(x)N(x,\mu)=S(x,\mu),\qquad 0\le x\le H,\quad -1\le\mu\le1, $$ with the initial-value conditions $N(H,\mu0)=N_H(\mu)$, $N(0,\mu>0)=N_0(\mu)$ are constructed and investigated. The schemes are constructed in two ways: 1) as equivalent one to the classical three-point scheme for the self-adjoint transport equation of the second order \begin{gather*} -\mu^2\frac{\partial}{\partial x}\biggl[\frac1{\alpha(x)}\frac{\partial N(x,\mu)}{\partial x}\biggr]+\alpha(x)N(x,\mu)=S(x,\mu)-\mu\frac{\partial}{\partial x}\biggl(\frac{S(x,\mu)}{\alpha(x)}\biggr), \\ 0\le x\le H,\quad -1\le\mu\le1, \end{gather*} with the boundary-value conditions $N(H,\mu0)=N_H(\mu0)$, $LN(0,\mu0)=S(0,\mu0)$, $N(0,\mu>0)=N_0(\mu>0)$, $LN(H,\mu>0)=S(H,\mu>0)$; 2) as equivalent one to multi-point schemes for the first order transport equation. The constructed schemes are positive, monotonous, of the second order of accuracy and high-effective for numerical solution of transport problems. These theoretical and practical properties caused by special dependence of weights on the net interval.
@article{MM_2003_15_1_a0,
     author = {V. E. Troshchiev and Yu. V. Troshchiev},
     title = {Monotonic difference schemes for transfer equation in plane layer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_1_a0/}
}
TY  - JOUR
AU  - V. E. Troshchiev
AU  - Yu. V. Troshchiev
TI  - Monotonic difference schemes for transfer equation in plane layer
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 3
EP  - 13
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_1_a0/
LA  - ru
ID  - MM_2003_15_1_a0
ER  - 
%0 Journal Article
%A V. E. Troshchiev
%A Yu. V. Troshchiev
%T Monotonic difference schemes for transfer equation in plane layer
%J Matematičeskoe modelirovanie
%D 2003
%P 3-13
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_1_a0/
%G ru
%F MM_2003_15_1_a0
V. E. Troshchiev; Yu. V. Troshchiev. Monotonic difference schemes for transfer equation in plane layer. Matematičeskoe modelirovanie, Tome 15 (2003) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/MM_2003_15_1_a0/

[1] E. S. Kuznetsov, “Ob ustanovlenii balansa luchistoi energii v pogloschayuschei i rasseivayuschei atmosfere”, Izv. AN SSSR, ser. geogr. i geofiz., 1940 | Zbl

[2] V. S. Vladimirov, Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits, Tr. Matematicheskogo instituta AN SSSR, 61, Izd. AN SSSR, M., 1961 | MR

[3] V. E. Troschiev, “Reshenie kineticheskogo uravneniya i uravneniya kvazidiffuzii po soglasovannym raznostnym skhemam”, Chislennye metody resheniya zadach matematicheskoi fiziki, Nauka, M., 1966, 177–185; Дополнение к ЖВМ и МФ, 6:4

[4] V. Ya. Goldin, N. I. Kalitkin, T. V. Shishova, “Nelineinye raznostnye skhemy dlya giperbolicheskikh uravnenii”, ZhVM i MF, 5:5 (1965), 938–944 | MR

[5] W. H. Reed, “New Difference Schemes for the Neutron Transport Equation”, Nucl. Sci. Eng., 46 (1971), 309–315

[6] E. V. Groshev, A. M. Pastushenko, V.F. Yudintsev, “Ob odnoi trekhtochechnoi raznostnoi skheme s vesovym mnozhitelem dlya uravneniya perenosa”, VANT, Seriya: Metodiki i programmy chislennogo resheniya zadach matematicheskoi fiziki, 1985, no. 2, 87–96

[7] V. E. Troschiev, “Metod postroeniya blochno-treugolnykh raznostnykh skhem dlya uravneniya perenosa v samosopryazhennoi forme”, Matem. modelirovanie, 10:1 (1998), 117–125 | MR

[8] Troshchiev V. E., Troshchiev Yu. V., “On Equivalent Approximations for the First and the Second-Order Transport Equations”, Finite-Difference Methods: Theory and Application, Proceedings of the Second International Conference, 3, Minsk, 1998, 117–122 | MR

[9] B. E. Troschiev, A. V. Nifanova, Postroenie i issledovanie raznostnykh skhem dlya uravneniya perenosa 1-go i 2-go poryadka v ploskom sloe, Preprint TRINITI No 0052-A, TsNIIATOMINFORM, 1999

[10] L. P. Base, A. M. Voloschenko, T. A. Germogenova, Metody diskretnykh ordinat v zadachakh o perenose izlucheniya, IPM AN SSSR, M., 1986

[11] A. I. Krylov, Lektsii o priblizhennykh vychisleniyakh, Gosizdat, M., 1954

[12] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[13] V. E. Troshchiev, “Difference schemes with triangular matrices on oblique-angled grids for two-dimensional transport equations. Methods of monotonization of schemes”, Intern. Sympozium “Numerical Transport Theory”, Moscow, 1992, 248–251

[14] S. R. Merkulova, V. E. Troschiev, Monotonnye raznostnye skhemy dlya uravneniya perenosa i metod ikh postroeniya, Preprint IAE im. I. V. Kurchatova, No 5458/16, M., 1992

[15] B. C. Vladimirov, “Chislennoe reshenie kineticheskogo uravneniya dlya sfery”, Vychislitelnaya matematika, no. 3, Izd. AN SSSR, M., 1958, 3–33

[16] A. V. Nikiforova, V. A. Tarasov, V. E. Troschiev, “O reshenii kineticheskikh uravnenii divergentnym metodom kharakteristik”, ZhVM i MF, 12:4 (1972), 1041–1048 | MR | Zbl

[17] Yelesin V. A., Troshchiyev V. E., Yudintsev V. F., “The numerical solution of spectral problems of thermal radiation transport by iterative correction methods”, Numerical methods in fluid dynamics, Mir Publishers, Moscow, 1984, 141–158 ; V. A. Elesin, V. E. Troschiev, V. F. Yudintsev, “Chislennoe reshenie spektralnykh zadach perenosa teplovogo izlucheniya iteratsionnymi metodami popravok”, Voprosy matematicheskogo modelirovaniya, vychislitelnoi matematiki i informatiki, Sb. nauchnykh trudov k 90-letiyu so dnya rozhdeniya akademika Yu. B. Kharitona, Arzamas-16, Moskva, 1994, 206–228 | MR

[18] V. A. Elesin, V. E. Troschiev, V. F. Yudintsev, “Razvitie chislennykh metodov i programm rascheta odnomernykh spektralnykh zadach perenosa teplovogo izlucheniya vo VNIIEF”, VANT, seriya: Metodiki i programmy chislennogo resheniya zadach matematicheskoi fiziki, 2002, no. 1

[19] G. I. Marchuk, V. I. Lebedev, Chislennye metody v teorii perenosa neitronov, Atomizdat, M., 1981 | MR

[20] Goldin V. Ya., “Kvazidiffuzionnyi metod resheniya kineticheskogo uravneniya”, ZhVM i MF, 4:6 (1964), 1078–1084 | MR

[21] D. Yu. Anistratov, V. Ya. Goldin, Sravnenie nelineinykh potokovykh metodov chislennogo resheniya uravneniya perenosa, Preprint IPM im. M. V. Keldysha AN SSSR, No 130, 1989 | MR