Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2003_15_12_a3, author = {D. M. Ediev}, title = {The concept of demographic potential and its applications}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {37--74}, publisher = {mathdoc}, volume = {15}, number = {12}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2003_15_12_a3/} }
D. M. Ediev. The concept of demographic potential and its applications. Matematičeskoe modelirovanie, Tome 15 (2003) no. 12, pp. 37-74. http://geodesic.mathdoc.fr/item/MM_2003_15_12_a3/
[1] Petrov A. A., Shananin A. A., “Matematicheskaya model dlya otsenki effektivnosti odnogo stsenariya ekonomicheskogo rosta”, Matem. modelirovanie, 14:7 (2002), 27–52 | Zbl
[2] Lotka A. J., “Relation between birth rates and death rates”, Science, 26 (1907) | DOI
[3] Lotka A. J., “Studies on the model of growth of material aggregates”, The American Journal of Science, 24 (1907) | Zbl
[4] Lotka A. J., Elements of Physical Biology, Williams and Wilkins, Dover Publications, Baltimore, New York, 1925 | Zbl
[5] Lotka A. J., “Theorie Analytique des Associations Biologiques. Part II. Analyse Demographique avec Application Particuliere a l'Espece Humanie”, Actualities Scientifiques et Industrielles, 780, Hermann and Cie, Paris, 1939
[6] Verhulst P. F., “Notice sur la loi que la population suit dans son accroissement”, Corres. Math. Phys., 10(1838), 113–121
[7] Raeside R., “The use of sigmoids in Modelling and Forecasting human Populations”, Journal of the Royal Statistical Society. Ser. A (Statistics in Society), 151:3 (1988), 499–513 | DOI
[8] Ediev D. M., Demograficheskie i ekonomiko-demograficheskie potentsialy, Dis.$\dots$ kand. fiz.-mat. nauk, MFTI, M., 1999
[9] Fisher R. A., The genetical theory of natural selection, Dover Publications, NY, 1930
[10] Lotka A. J., “The stability of the normal age distribution”, Proceedings of the National Academy of Sciences (USA), 8, 1922, 339–345
[11] Leslie P. H., “Some Further Notes on the Use of Matrices in Population Mathematics”, Biometrika, 35 (1948), 213–245 | MR | Zbl
[12] Cole L. C., “Dynamics of animal population growth”, Public Health and Population Change: Current Research Issues, eds. M. C. Sheps, J. C. Ridley, University of Pittsburgh Press, Pittsburgh, 1965
[13] Espenshade T. J., Campbell G., “The Stable Equivalent Population, Age Composition, and Fisher's Reproductive Value Function”, Demography, 14 (1977), 77–86 | DOI
[14] Keyfitz N., Flieger W., World Population: An Analysis of Vital Data, The University of Chicago Press, Chicago, 1968
[15] Keyfitz N., Flieger W., World Population Growth and Aging: Demographic Trends in the Late Twentieth Century, The University of Chicago Press, Chicago, London, 1990 | Zbl
[16] Goodman L. A., “On the Age-Sex Composition of the Population That Would Result From Given Fertility and Mortality Conditions”, Demography, 4 (1967), 423–441 | DOI
[17] Goodman L. A., “On the Reconciliation of Mathematical Theories of Population Growth”, Journal of the Royal Statistical Society, Ser. A (General), CXXX (1967), 541–553 | DOI | MR
[18] Keyfitz N., “Age Distribution and Stable Equivalent”, Demography, 6 (1969), 261–269 | DOI
[19] Goodman L. A., “An Elementary Approach to the Population Projection-Matrix, to the Population Reproductive Value, and to Related Topics in the Mathematical Theory of Population Growth”, Demography, 5 (1968), 382–409 | DOI
[20] Keyfitz N., Introduction to the Mathematics of the Population, Addison-Wesley, Reading, Mass., 1968
[21] Keyfitz N., Applied mathematical demography, Springer, NY, etc., 1985 | MR | Zbl
[22] Vincent P., “Potentiel d'accroissement d'une population stable”, Journal de la Societe de Statistique de Paris, 86 (1945), 16–29
[23] Bourgeois-Pichat J. E., The Concept of a Stable Population. Application to the Study of Populations of Countries With Incomplete Demographic Statistics, United Nations, NY, 1968
[24] Bourgeois-Pichat J. E., “Stable, Semi-stable Populations and Growth Potential”, Population Studies, 25 (1971), 235–254 | DOI
[25] Pirozhkov S. I., Analiz vozrastnoi struktury naseleniya i zakonomernosti ee formirovaniya, Dis.$\dots$ kand. ekon. nauk, KINKh, Kiev, 1973
[26] Kvasha A. Ya., Problemy ekonomiko-demograficheskogo razvitiya SSSR, Statistika, M., 1974
[27] Andreev E. M., Pirozhkov S. I., “O potentsiale demograficheskogo rosta”, Naselenie i okruzhayuschaya sreda, M., 1975
[28] Pirozhkov S. I., Demograficheskie protsessy i vozrastnaya struktura naseleniya, Statistika, M., 1976
[29] Vishnevskii A. G., “Vozrastnaya struktura naseleniya i ee izuchenie”, Vestnik statistiki, 1977, no. 1, 65–69
[30] Barkalov N. B., Modelirovanie demograficheskogo perekhoda, Izd-vo MGU, M., 1984
[31] Rubinov A. M., Chistyakova N. E., “Vozrastnaya struktura i potentsial rosta naseleniya”, Demograficheskie protsessy i ikh zakonomernosti, ed. Volkov A. G., Mysl, M., 1986, 38–52
[32] Keyfitz N., “On the momentum of Population Growth”, Demography, 8 (1971), 71–80 | DOI
[33] Frejka T., “Reflections on the Demographic Conditions Needed to Establish a U.S. Stationary Population Growth”, Population Studies, 22 (1968), 379–397 | DOI
[34] Frejka T., The Future of Population Growth, John Wiley Sons, NY, 1973
[35] Frauenthal J. C., “Birth Trajectory Under Changing Fertility Conditions”, Demography, 12 (1975), 447–454 | DOI
[36] Mitra S., “Influence of instantaneous fertility decline to replacement level on population growth: an alternative model”, Demography, 13 (1976), 513–519 | DOI
[37] Mitra S., “Models of birth trajectories with certain patterns of variation in vital rates”, Genus, 43 (1987), 1–14
[38] Tognetti K., “Some Extensions of the Keyfitz Momentum Relationship”, Demography, 13 (1976), 507–512 | DOI
[39] Potter R. G., Wolowyna O. Kulkarni P. M., “Population Momentum: A Wider Definition”, Population Studies, 31 (1977), 555–569 | DOI
[40] Preston S. H., Coale A. J., “Age structure growth, attrition, and accession: a new synthesis”, Population Index, 48 (1982), 215–259 | DOI
[41] Preston S. H., “The relation between actual and intrinsic growth rates”, Population Studies, 40 (1986), 343–351 | DOI | MR
[42] Wachter K. W., “Age group growth rates and population momentum”, Population Studies, 42 (1988), 487–494 | DOI
[43] Schoen R., Kim Y. J., “Movement toward stability as a fundamental principle of population dynamics”, Demography, 28 (1991), 455–466 | DOI | MR
[44] Kim Y. J., Schoen R., Sarma P. S., “Momentum and the growth-free segment of a population”, Demography, 28 (1991), 159–173 | DOI
[45] Cerone P., “On the effect of the generalized renewal integral equation model of population dynamics”, Genus, 52 (1996), 53–70
[46] Kim Y. J., Schoen R., “Population momentum expresses population aging”, Demography, 34 (1997), 421–427 | DOI
[47] Tuljapurkar Sh., Li N., Population momentum, http://www.mvr.org/Papers/ momentum
[48] Safarova G. L., “O stabilizatsii v matrichnoi modeli vosproizvodstva naseleniya”, Demograficheskie protsessy i ikh zakonomernosti, ed. Volkov A. G., Mysl, M., 1986, 52–59
[49] Leslie P. H., “On the use of matrices in certain population mathematics”, Biometrika, 35 (1945), 183–212 | DOI | MR
[50] Whelpton P. K., “Reproduction rates adjusted for age, parity, fecundity, and marriage”, Journal of the American Statistical Association, 41:236 (1946), 501 | DOI
[51] Elizaga J. C., “Metods para medir la fecundidad “actual” de una poblacion”, Proceedings of the World Population, V. 4 (Conference, Rome, 1954), United Nations, New York, 1955, 291–302
[52] Bourgeois-Pichat J. E., “La mesure de la fecondite des populations humanies”, Proceedings of the World Population Conference, V. 4 (Rome, 1954), United Nations, New York, 1955, 249–259
[53] National Center for Health Statistics. Vital statistics of the United States, 1991, V. I. Natality, Public Health Service, Washington, 1995
[54] Hersch L., De la demographie actuelle a la demographie potentielle, 1944
[55] Lefkovitch L. P., “The study of population growth in organisms grouped by stages”, Biometrics, 21 (1965), 1–18 | DOI
[56] Law R., Edley M. T., “Transient Dynamics of Populations with Age- and Size-Dependent Vital Rates”, Ecology, 71:5 (1990), 1863–1870 | DOI
[57] Caswell H., “Optimal life histories and the maximization of reproductive value: a general theorem of complex life cycles”, Ecology, 63 (1982), 1218–1222 | DOI
[58] Caswell H., “Life cycle models for plants”, Lectures on Mathematics in the Life Sciences, 18 (1986), 171–233 | MR
[59] U. S. Bureau of the Census, International Data Base (IDB), http://www.census.gov/ipc/www/idbnew.html
[60] The Berkeley mortality database, http://www.demog.berkeley.edu/~bmd/states.htm
[61] United Nations, Manual X: Indirect techniques for demographic estimation, UN, NY, 1983
[62] Ediev D. M., Principles of aggregate economic-demographic modeling based on demographic potentials' technique, http://www.demogr.mpg.de/Papers/workshops/wsOO 1011.htm
[63] Ediev D. M., “Agregirovannoe prognozirovanie chislennosti naseleniya s ispolzovaniem tekhniki demograficheskogo potentsiala”, Elektronnyi zhurnal “Issledovano v Rossii”, 38 (2001), 382–407; http://zhurnal.ape.relarn.ru/articles/2001/038.pdf
[64] Ediev D. M., “Application of the demographic potential concept to understanding the Russian population history and prospects: 1897–2100”, Demographic Research, 4 (2001), 289–336, Article 9 ; http://www.demographic-research.Org/volumes/vol4/9/4-9.pdf | DOI
[65] United Nations, World Population Prospects. The 2000 Revision, V. I, II, UN, NY, 2001
[66] Goskomstat Rossii. Naselenie Rossii za 100 let (1897–1997), Goskomstat Rossii, M., 1998
[67] Andreev E. M., Tsarskii L. E., Kharkova T. L., Demograficheskaya istoriya Rossii: 1927–1959, Informatika, M., 1998
[68] Greville T. N. E., “Some new generalized inverses of with spectral properties”, Theory and Application of Generalized Inverses of Matrices, Texas Technological College Mathematics, 4, Texas Technological Press, Lubbock, 1968, 26–46 | MR
[69] Greville T. N. E., Keyfitz N., “Backward population projection by a generalized inverse”, Theoretical Population Biology, 6 (1974), 135–142 | DOI | Zbl
[70] Lee R. D., Econometric Studies of Topics in Demographic History, Ph. D. Dissertation (1971), Harvard University, Arno Press, 1978
[71] Lee R. D., “Estimating series of vital rates and structures from baptisms and burials: a new technique, with application to pre-industrial England”, Population Studies, 28 (1974), 495–512 | DOI
[72] Wrigley E. A., Schofield R. S., The Population History of England, 1541–1871: A Reconciliation, London, 1981
[73] Oeppen J., “Back Projection and Inverse Projection: Members of a Wider Class of Constrained Projection Models”, Population Studies, 47 (1993), 245–267 | DOI
[74] Lee R. D., “Inverse projection and back projection: a critical appraisal and comparative results for England 1539–1871”, Population Studies, 39:2 (1985) | DOI
[75] Wachter K. W., “Ergodicity and inverse projection”, Population Studies, 40 (1986), 275–287 | DOI
[76] Ediev D. M., “Rekonstruktsiya pokazatelei immigratsii v SShA s ispolzovaniem modeli demograficheskogo potentsiala”, Elektronnyi zhurnal “Issledovano v Rossii”, 140 (2001), 1619–1635; http://zhurnal.ape.relarn.ru/articles/2001/140e.pdf
[77] U.S. Immigration and Naturalization Service, Statistical Yearbook of the Immigration and Naturalization Service, 1997. U.S. Government Printing Office: Washington, D.C, 1999
[78] Bennett M. T., American Immigration Policies. A History, Public Affairs Press, Washington, D.C, 1963
[79] Veda R., Postwar Immigrant America. A Social History, BEDFORD BOOKS of ST. MARTIN'S PRESS, Boston-New York, 1994
[80] Arthur W. B., “The Ergodic Theorems of Demography, a Simple Proof”, Demography, 19 (1982), 439–445 | DOI
[81] Arthur W. B., “Why a population converges to stability”, American Mathematical Monthly, 88:8 (1981), 557–563 | DOI | MR
[82] Ediev D. M., “Vzaimosvyaz mezhdu spektralnymi svoistvami matritsy Lesli i vozrastnoi strukturoi demograficheskogo potentsiala”, Elektronnyi zhurnal “Issledovano v Rossii”, 74 (2002), 815–823; http://zhurnal.ape.relarn.ru/articles/2002/074e.pdf
[83] Tuljapurkar Sh., “Why use population entropy? It determines the rate of convergence”, Journal of Mathematical Biology, 13 (1982), 325–337 | DOI | MR | Zbl
[84] Kullback S., Leibler R., “On information and Sufficiency”, Ann. of Math. Stat., 22 (1951), 79–86 | DOI | MR | Zbl
[85] Kullback S., Information theory and statistics, John Wiley, New York, 1959 | MR | Zbl
[86] Ediev D. M., “Ob usloviyakh monotonnoi skhodimosti struktury naseleniya k strukture stabilnogo ekvivalentnogo naseleniya v kullbakovskoi metrike v ramkakh modeli vosproizvodstva demograficheskogo potentsiala”, Elektronnyi zhurnal “Issledovano v Rossii”, 17 (2002), 182–190; http://zhurnal.ape.relarn.ru/articles/2002/017.pdf
[87] Ediev D. M., “On monotonic convergence to stability”, Demographic Research, 8 (2003), 31–60, Article 2 ; http://www.demographic-research.Org/ volumes/vol8/2/8-2.pdf | DOI | MR
[88] Khardi G. G., Littlvud D. E., Polia G., Neravenstva, TsL, M., 1948
[89] Ediev D. M., “Ob usloviyakh monotonnoi skhodimosti struktury naseleniya k strukture stabilnogo ekvivalentnogo naseleniya v kvadratichnoi metrike v ramkakh modeli vosproizvodstva demograficheskogo potentsiala”, Izvestiya VUZov. Severo-Kavkazskii region. Estestvennye nauki, 2002, no. 4, 3–6 | Zbl