Numerical investigation of 3-D separated viscous incompressible fluid flow past an obstacle on a plane
Matematičeskoe modelirovanie, Tome 15 (2003) no. 12, pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The viscous incompressible fluid flow past an obstacle on a plane is numerically investigated. The governing equations are written in variables “pressure-velocity” for arbitrary curvilinear system of coordinates. Numerical integration is carried out within the framework of a known method of physical variables splitting on a case of arbitrary curvilinear system of coordinates. An essential interest represents the unsteady and 3-D forms of separation. The instant lines of the limiting streamlines were used allowing to classify a topological flow field structure for visualization of separated flows. The topological structures arising near a body surface has been obtained for different Reynolds's numbers. It is shown that near of a body surface the connection of singular point amount is fulfilled. The results are well agreed with numerical, experimental and analytical researches of other authors.
@article{MM_2003_15_12_a0,
     author = {Yu. D. Shevelev and S. G. Klekovkin},
     title = {Numerical investigation of {3-D} separated viscous incompressible fluid flow past an obstacle on a plane},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {15},
     number = {12},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_12_a0/}
}
TY  - JOUR
AU  - Yu. D. Shevelev
AU  - S. G. Klekovkin
TI  - Numerical investigation of 3-D separated viscous incompressible fluid flow past an obstacle on a plane
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 3
EP  - 15
VL  - 15
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_12_a0/
LA  - ru
ID  - MM_2003_15_12_a0
ER  - 
%0 Journal Article
%A Yu. D. Shevelev
%A S. G. Klekovkin
%T Numerical investigation of 3-D separated viscous incompressible fluid flow past an obstacle on a plane
%J Matematičeskoe modelirovanie
%D 2003
%P 3-15
%V 15
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_12_a0/
%G ru
%F MM_2003_15_12_a0
Yu. D. Shevelev; S. G. Klekovkin. Numerical investigation of 3-D separated viscous incompressible fluid flow past an obstacle on a plane. Matematičeskoe modelirovanie, Tome 15 (2003) no. 12, pp. 3-15. http://geodesic.mathdoc.fr/item/MM_2003_15_12_a0/

[1] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[2] Belotserkovskii O. M., Andruschenko V. A., Shevelev Yu. D., Dinamika prostranstvennykh vikhrevykh techenii v neodnorodnoi atmosfere, Yanus-K, M., 2000

[3] Belotserkovskii O. M., Chislennoe modelirovanie mekhaniki sploshnykh sred, Fizmatgiz, M., 1994 | Zbl

[4] Belotserkovskii O. M., Guschin V. A., Schennikov V. V., “Metod rasschepleniya v primenenii k resheniyu zadach vyazkoi neszhimaemoi zhidkosti”, ZhVM i MF, 15:1 (1975) | MR

[5] Harlow F. H., Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface”, Phys. Fluids, 1965, no. 8, 2182–2189 | DOI | MR | Zbl

[6] Shevelev Yu. D., Prostranstvennye zadachi vychislitelnoi aerogidrodinamiki., Nauka, M., 1986 | Zbl

[7] Easton C. R., “Homogeneous boundary conditions for pressure in MAC method”, J. Comput. Phys., 9:2 (1972) | DOI | MR

[8] Wu Hua-mo, Wang Li-er, Convergence of MAC-like methods for the Navier-Stokes equations, 1984 | MR

[9] Perry A. E., Chong M. S., “A description of eddying motions and flow patterns using critical-point concepts”, Annual Review of Fluid Mechanics, 19 (1987), 125–155 | DOI

[10] Mason P. J., Sykes R. I., “Three-dimensional numerical integration of the Navier–Stokes equations for the flow over surface-mounted obstacles”, J. Fluid Mech., 91:3 (1979), 433–450 | DOI | Zbl

[11] Scholtysik M., Bernhard M., Torstein K., “Numerical solution of the reduced Navier–Stokes equations for internal incompressible flows”, AIAA Journal, 38:9 (2000), 1603–1613 | DOI