On a method of solution for one-dimensional stationary gas dynamics equations
Matematičeskoe modelirovanie, Tome 15 (2003) no. 11, pp. 30-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

An area is considered in which there is the single point with $\mathrm M=1$ and $\mathrm M$ increases monotonically from subsonic to supersonic values. A function with the single minimum at the point $\mathrm M=1$ is introduced. The iterative method is based on search minimum of this function. The calculations have shown good agreement with the results for two-phase flow in a Laval nozzle obtained by the pseudotransient method and with the exact solution for a constant section channel.
@article{MM_2003_15_11_a2,
     author = {V. M. Galkin},
     title = {On a method of solution for one-dimensional stationary gas dynamics equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {30--36},
     publisher = {mathdoc},
     volume = {15},
     number = {11},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_11_a2/}
}
TY  - JOUR
AU  - V. M. Galkin
TI  - On a method of solution for one-dimensional stationary gas dynamics equations
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 30
EP  - 36
VL  - 15
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_11_a2/
LA  - ru
ID  - MM_2003_15_11_a2
ER  - 
%0 Journal Article
%A V. M. Galkin
%T On a method of solution for one-dimensional stationary gas dynamics equations
%J Matematičeskoe modelirovanie
%D 2003
%P 30-36
%V 15
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_11_a2/
%G ru
%F MM_2003_15_11_a2
V. M. Galkin. On a method of solution for one-dimensional stationary gas dynamics equations. Matematičeskoe modelirovanie, Tome 15 (2003) no. 11, pp. 30-36. http://geodesic.mathdoc.fr/item/MM_2003_15_11_a2/

[1] Galkin V. M., Chislennoe issledovanie dvukhfaznykh techenii v geofizicheskikh MGD generatorakh, avtoreferat dissertatsii $\dots$ kand. fiz.-mat. nauk, TGU, Tomsk, 1990

[2] Chernyi G. G., Gazovaya dinamika, Nauka, M., 1988

[3] Smirnov A. A., “Pryamoi metod rascheta dvukhfaznogo techeniya v do-, transzvukovoi oblasti”, Issledovaniya po ballistike i smezhnym voprosam, Sb. statei, Izd-vo Tom. un-ta, Tomsk, 1999, 20–22

[4] Rogov B. V., “Metod minimalnoi dliny dlya techenii s transzvukovoi bifurkatsiei”, DAN, 381:1 (2001), 23–26 | MR | Zbl

[5] Bylis L. A., Termodinamika gazovykh potokov, Gosenergoizdat, M., 1950

[6] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1987 | MR

[7] Sternin L. E., Osnovy gazodinamiki dvukhfaznykh techenii v soplakh, Mashinostroenie, M., 1974

[8] Glazunov A. A., Rynkov A. D., “Issledovanie dvukhfaznykh neravnovesnykh techenii v osesimmetrichnykh soplakh”, Izv. AN SSSR, MZhG, 1977, no. 6, 86–91 | Zbl

[9] Henderson C. B., “Drag coefficients of spheres in continuum and rarefied flows”, AIAA Journal, 14:6 (1976), 707–708 | DOI

[10] MacCormack R. W., “The effect of viscosity in hypervelocity impact cratering”, AIAA, 1969, 69–354