Computational investigation of wave processes in perforated deformable media
Matematičeskoe modelirovanie, Tome 15 (2003) no. 10, pp. 89-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The extremely actual problem of security of housing and industrial constructions by action of intensive dynamic loadings due to man-caused and natural catastrophes (explosive loadings, seismic activity, falling of airplanes and elements of orbital apparatus, acts of terrorism etc.) is addressed. Computational solution of the problem permits to give quantitative evaluation of durability and safety of buildings, that is to forecast the position and size of probable destruction area depending on intensity and character of influence, place of dynamic loading application and geometry of building, mechanical and thermophysical properties of constructive materials. Hyperbolic partial derivative system of equations from the deformable solid body mechanics was chosen as the mathematical model of construction materials [2, 3]. The Grid-Characteristic method [1] was used for the computational solution of the model.
@article{MM_2003_15_10_a7,
     author = {I. B. Petrov and F. B. Chelnokov and V. V. Chibrikov},
     title = {Computational investigation of wave processes in perforated deformable media},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--94},
     publisher = {mathdoc},
     volume = {15},
     number = {10},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_10_a7/}
}
TY  - JOUR
AU  - I. B. Petrov
AU  - F. B. Chelnokov
AU  - V. V. Chibrikov
TI  - Computational investigation of wave processes in perforated deformable media
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 89
EP  - 94
VL  - 15
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_10_a7/
LA  - ru
ID  - MM_2003_15_10_a7
ER  - 
%0 Journal Article
%A I. B. Petrov
%A F. B. Chelnokov
%A V. V. Chibrikov
%T Computational investigation of wave processes in perforated deformable media
%J Matematičeskoe modelirovanie
%D 2003
%P 89-94
%V 15
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_10_a7/
%G ru
%F MM_2003_15_10_a7
I. B. Petrov; F. B. Chelnokov; V. V. Chibrikov. Computational investigation of wave processes in perforated deformable media. Matematičeskoe modelirovanie, Tome 15 (2003) no. 10, pp. 89-94. http://geodesic.mathdoc.fr/item/MM_2003_15_10_a7/

[1] K. M. Magomedov, A. S. Kholodov, “O postroenii raznostnykh skhem dlya uravnenii giperbolicheskogo tipa na osnove kharakteristicheskii sootnoshenii”, Zh. vychisl. matem. i matem. fiz., 9:2 (1969), 373–386 | MR | Zbl

[2] I. B. Petrov, A. S. Kholodov, “Chislennoe issledovanie nekotorykh dinamicheskikh zadach mekhaniki deformiruemogo tverdogo tela setochno-kharakteristicheskim metodom”, Zh. vychisl. matem. i matem. fiz., 24:5 (1984), 722–739 | MR | Zbl

[3] V. D. Ivanov, V. I. Kondaurov, I. B. Petrov, A.S.Kholodov, “Raschet dinamicheskogo deformirovaniya i razrusheniya uprugoplasticheskikh tel setochno-kharakteristicheskimi metodami”, Matem. modelirovanie, 2:11 (1990), 10–29 | MR

[4] V. I. Kondaurov, “Chislennoe modelirovanie dinamicheskikh protsessov deformirovaniya i razrusheniya uprugoplasticheskikh sred”, Uspekhi mekh., 8:4 (1985), 25–65

[5] V. I. Kondaurov, “Kontinualnoe razrushenie nelineino-uprugikh tel”, Matem. modelirovanie, 52:2 (1988), 302–310 | MR | Zbl

[6] I. B. Petrov, “Volnovye i otkolnye yavleniya v sloistykh obolochkakh konechnoi tolschiny”, Izvestiya AN SSSR, Mekhan. tverdogo tela, 1986, no. 4, 118–124

[7] S. G. Sugak, G. I. Kanel, V. E. Fortov, A. L. Ni, V. G. Stelmakh, “Chislennoe modelirovanie deistviya vzryva na plitu”, Fiz. goreniya i vzryva, 1983, no. 2, 121–128

[8] K. M. Magomedov, A. S. Kholodov, Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[9] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnykh sred, Fizmatlit, M., 1994 | Zbl

[10] O. M. Belotserkovskii, Vychislitelnaya mekhanika. Sovremennye problemy i rezultaty, Nauka, M., 1991 | Zbl

[11] P. I. Agapov, I. B. Petrov, A. S. Obukhov, F. B. Chelnokov, “Chislennoe reshenie dinamicheskikh zadach biomekhaniki setochno-kharakteristicheskim metodom”, Kompyuternye modeli i progress meditsiny, Nauka, M., 2001, 275–300

[12] V. K. Novatskii, Teoriya uprugosti, Mir, M., 1975 | MR