A simple model for the identification of cellular convective structures using the data of measurements in the atmospheric boundary layer
Matematičeskoe modelirovanie, Tome 15 (2003) no. 10, pp. 60-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model is proposed that describes the variability of meteorological parameters for several types of cellular convective structures arbitrarily oriented with respect to the site of measurements. On the base of this model, the equations are derived, which describe the variation in time of the wind velocity components. The following four types of the atmospheric cellular convection were considered: hexagonal cells with the upstream in their centers, those with the downstream in their centers, rectangular cells, and convective rolls. The analysis of the spectra predicted by our model for the four types of cellular structures revealed the peculiarities specific for each type of cellular convection. The processing of observational data obtained at several levels on the high meteorologic tower has shown that, while an unstable stratification of the atmosphere exists, the spectra contain peculiarities characteristic for the considered types of cellular convection. This enables one to detect the appearance of coherent structures in the tmosphere, to determine their type, and to evaluate their parameters.
@article{MM_2003_15_10_a4,
     author = {V. N. Ivanov and A. V. Tygliyan and S. S. Filippov},
     title = {A simple model for the identification of cellular convective structures using the data of measurements in the atmospheric boundary layer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {60--70},
     publisher = {mathdoc},
     volume = {15},
     number = {10},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2003_15_10_a4/}
}
TY  - JOUR
AU  - V. N. Ivanov
AU  - A. V. Tygliyan
AU  - S. S. Filippov
TI  - A simple model for the identification of cellular convective structures using the data of measurements in the atmospheric boundary layer
JO  - Matematičeskoe modelirovanie
PY  - 2003
SP  - 60
EP  - 70
VL  - 15
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2003_15_10_a4/
LA  - ru
ID  - MM_2003_15_10_a4
ER  - 
%0 Journal Article
%A V. N. Ivanov
%A A. V. Tygliyan
%A S. S. Filippov
%T A simple model for the identification of cellular convective structures using the data of measurements in the atmospheric boundary layer
%J Matematičeskoe modelirovanie
%D 2003
%P 60-70
%V 15
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2003_15_10_a4/
%G ru
%F MM_2003_15_10_a4
V. N. Ivanov; A. V. Tygliyan; S. S. Filippov. A simple model for the identification of cellular convective structures using the data of measurements in the atmospheric boundary layer. Matematičeskoe modelirovanie, Tome 15 (2003) no. 10, pp. 60-70. http://geodesic.mathdoc.fr/item/MM_2003_15_10_a4/

[1] Veltischev N. F., Silaeva L. I., “Konvektivnye oblachnye yacheiki po nablyudeniyam s iskusstvennykh sputnikov Zemli”, Tr. GMTs, 1968, no. 20, 22–29

[2] Agee E. M., Dowell R. E., “Observational studies of mesoscale cellular convection”, Journ. Appl. Met., 13:1 (1974), 46–53 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[3] Atkinson B. W., Wu Zhang J., “Mesoscale shallow convection in the atmosphere”, Rev. Geophys., 34 (1996), 147–179 | DOI

[4] Lohou F., Campistron B., Druilet A., “Doppler radar: an efficient tool for the three dimensional description of organized cloudy boundary layers”, J. Atmos. Res., 50 (1999), 69–74 | DOI

[5] Vyzova N. L., Volnistova L. P., Ivanov V. N., Shvetsov D. M., “Ispolzovanie razlozhenii Karunena–Loeva dlya analiza krupnomasshtabnykh atmosfernykh dvizhenii v atmosfernom pogranichnom sloe”, Izv. AN. Fizika atmosfery i okeana, 35 (1999), 497–505

[6] Byzova N. L., Ivanov V. N., Garger E. K., Turbulentnost v pogranichnom sloe atmosfery, Gidrometeoizdat, L., 1989

[7] Byzova N. L., “O kogerentnykh strukturakh v pogranichnom sloe atmosfery (obzor)”, Tr. IEM, 57(159), Obninsk, 1994, 120–138

[8] Gao W., Shaw R. H., Paw U., “Observation of organized structure in turbulent flow within and above a forest canopy”, Boundary Layer Met, 47 (1989), 349–377 | DOI

[9] Sziladyl J., Parlange M. et al., “An objective method for determining principal time scales of coherent eddy structures using orthonormal wavelets”, Advances in Water Resources, 22:6 (1998), 561–566

[10] Byzova N. L., “Bolshie vikhri i potok kolichestva dvizheniya v nizhnei chasti pogranichnogo sloya atmosfery”, Izv. AN. Fizika atmosfery i okeana, 32 (1996), 440–447

[11] Ivanov V. N., Byzova N. L., “Kogerentnye struktury v pogranichnom sloe atmosfery”, Meteorologiya i gidrologiya, 2001, no. 1, 5–25

[12] Veltischev N. F., “Yacheikovaya konvektsiya v atmosfere”, Tr. GMTs, 1969, no. 50, 3–21