Branching process with dependent particles as a model of the catastrophic behavior
Matematičeskoe modelirovanie, Tome 14 (2002) no. 9, pp. 53-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recent studies showed that many of man-caused accidents and natural disasters are systemic. I.e. a catastrophic event occurs not because of the unfavorable concatenation of circumstances but owing to a taste for the catastrophic behavior inherent to complex systems. Power probability distribution laws are a mathematical image of catastrophicality. The universal system mechanism of theirs origin is a self-organization to the critical state which takes place in many open nonlinear systems. However particular processes resulting in power laws can be quite different. So the question arises as to the mutual relation of these processes and self-organization phenomenon. We investigate a branching process with dependent particles. It's characterized by power law and can be a model of the catastrophic behavior.
@article{MM_2002_14_9_a10,
     author = {A. V. Podlazov},
     title = {Branching process with dependent particles as a model of the catastrophic behavior},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--58},
     publisher = {mathdoc},
     volume = {14},
     number = {9},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_9_a10/}
}
TY  - JOUR
AU  - A. V. Podlazov
TI  - Branching process with dependent particles as a model of the catastrophic behavior
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 53
EP  - 58
VL  - 14
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_9_a10/
LA  - ru
ID  - MM_2002_14_9_a10
ER  - 
%0 Journal Article
%A A. V. Podlazov
%T Branching process with dependent particles as a model of the catastrophic behavior
%J Matematičeskoe modelirovanie
%D 2002
%P 53-58
%V 14
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_9_a10/
%G ru
%F MM_2002_14_9_a10
A. V. Podlazov. Branching process with dependent particles as a model of the catastrophic behavior. Matematičeskoe modelirovanie, Tome 14 (2002) no. 9, pp. 53-58. http://geodesic.mathdoc.fr/item/MM_2002_14_9_a10/

[1] P. Bak, How nature works: the science of self-organized criticality, Springer-Verlag, New York, Inc., 1996 | MR

[2] G. S. Golitsyn, “Zemletryaseniya s tochki zreniya teorii podobiya”, DAN, 346:4 (1996), 536–539

[3] J. B. Rundle, D. L. Turcotte, W. Klein (eds.), “Reduction and predictability of natural disaster”, Proceedings of the workshop “Reduction and predictability of natural disasters” (January 5–9, 1994, Santa Fe, New Mexico, 1995)

[4] C. J. Rhodes, R. M. Anderson, “Power laws governing epidemics in isolated populations”, Nature, 381 (1996), 600–602 | DOI

[5] D. Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge Univ. Press, 1997 | MR

[6] M. E. J. Newman, “A model of mass extinction”, J. Theor. Biol., 189 (1997), 235–252 | DOI

[7] R. V. Solé, S. C. Manrubia, “Criticality and unpredictability in macroevolution”, Phys. Rev. E, 55:4 (1997), 4500–4507 | DOI

[8] M. E. J. Newman, “Self-organized criticality, evolution and the fossil extinction record”, Proc. R. Soc. London B, 263 (1996), 1605 | DOI

[9] R. N. Mantegna, H. E. Stanley, “Scaling behavior in the dynamics of an economic index”, Nature, 376 (1995), 46–49 | DOI

[10] B. H. Kanamori, D. L. Anderson, “Theoretical basis of some empirical relations in seismology”, Bull. Seism. Soc. Am., 65:5 (1975), 1073–1095

[11] G. G. Malinetskii, A. V. Podlazov, “Paradigma samoorganizovannoi kritichnosti. Ierarkhiya modelei i predely predskazuemosti”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 5:5 (1997), 89–106

[12] V. A. Vladimirov, Yu. L. Vorobev, i dr., Upravlenie riskom. Risk, ustoichivoe razvitie, sinergetika, Nauka, M., 2000

[13] A. V. Podlazov, “Samoorganizovannaya kritichnost i analiz riska”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 9:1 (2001), 49–88 | Zbl

[14] T. Kharris, Teoriya vetvyaschikhsya protsessov, Mir, M., 1966

[15] D. Sornette, A. Johansen, I. Dornic, “Mapping self-organized criticality onto criticality”, J. Phys. I (France), 5 (1995), 325 | DOI

[16] S. Clar, B. Drossel, F. Schwabl, “Forest fires and other examples of self-organized criticality”, J. Phys., 8 (1996), 6803

[17] D. Sornette, “Linear stochastic dynamics with nonlinear fractal properties”, Physica A, 250:1–4 (1998), 295–314 | DOI

[18] D. Sornette, “Multiplicative processes and power laws”, Phys. Rev. E, 57 (1998), 4811–4813 | DOI

[19] D. Sornette, R. Cont, “Convergent multiplicative processes repelled from zero: power laws and truncated power laws”, J. Phys., 7 (1997), 431–444