Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2002_14_9_a10, author = {A. V. Podlazov}, title = {Branching process with dependent particles as a model of the catastrophic behavior}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {53--58}, publisher = {mathdoc}, volume = {14}, number = {9}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2002_14_9_a10/} }
A. V. Podlazov. Branching process with dependent particles as a model of the catastrophic behavior. Matematičeskoe modelirovanie, Tome 14 (2002) no. 9, pp. 53-58. http://geodesic.mathdoc.fr/item/MM_2002_14_9_a10/
[1] P. Bak, How nature works: the science of self-organized criticality, Springer-Verlag, New York, Inc., 1996 | MR
[2] G. S. Golitsyn, “Zemletryaseniya s tochki zreniya teorii podobiya”, DAN, 346:4 (1996), 536–539
[3] J. B. Rundle, D. L. Turcotte, W. Klein (eds.), “Reduction and predictability of natural disaster”, Proceedings of the workshop “Reduction and predictability of natural disasters” (January 5–9, 1994, Santa Fe, New Mexico, 1995)
[4] C. J. Rhodes, R. M. Anderson, “Power laws governing epidemics in isolated populations”, Nature, 381 (1996), 600–602 | DOI
[5] D. Turcotte, Fractals and Chaos in Geology and Geophysics, Cambridge Univ. Press, 1997 | MR
[6] M. E. J. Newman, “A model of mass extinction”, J. Theor. Biol., 189 (1997), 235–252 | DOI
[7] R. V. Solé, S. C. Manrubia, “Criticality and unpredictability in macroevolution”, Phys. Rev. E, 55:4 (1997), 4500–4507 | DOI
[8] M. E. J. Newman, “Self-organized criticality, evolution and the fossil extinction record”, Proc. R. Soc. London B, 263 (1996), 1605 | DOI
[9] R. N. Mantegna, H. E. Stanley, “Scaling behavior in the dynamics of an economic index”, Nature, 376 (1995), 46–49 | DOI
[10] B. H. Kanamori, D. L. Anderson, “Theoretical basis of some empirical relations in seismology”, Bull. Seism. Soc. Am., 65:5 (1975), 1073–1095
[11] G. G. Malinetskii, A. V. Podlazov, “Paradigma samoorganizovannoi kritichnosti. Ierarkhiya modelei i predely predskazuemosti”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 5:5 (1997), 89–106
[12] V. A. Vladimirov, Yu. L. Vorobev, i dr., Upravlenie riskom. Risk, ustoichivoe razvitie, sinergetika, Nauka, M., 2000
[13] A. V. Podlazov, “Samoorganizovannaya kritichnost i analiz riska”, Izvestiya vuzov. Prikladnaya nelineinaya dinamika, 9:1 (2001), 49–88 | Zbl
[14] T. Kharris, Teoriya vetvyaschikhsya protsessov, Mir, M., 1966
[15] D. Sornette, A. Johansen, I. Dornic, “Mapping self-organized criticality onto criticality”, J. Phys. I (France), 5 (1995), 325 | DOI
[16] S. Clar, B. Drossel, F. Schwabl, “Forest fires and other examples of self-organized criticality”, J. Phys., 8 (1996), 6803
[17] D. Sornette, “Linear stochastic dynamics with nonlinear fractal properties”, Physica A, 250:1–4 (1998), 295–314 | DOI
[18] D. Sornette, “Multiplicative processes and power laws”, Phys. Rev. E, 57 (1998), 4811–4813 | DOI
[19] D. Sornette, R. Cont, “Convergent multiplicative processes repelled from zero: power laws and truncated power laws”, J. Phys., 7 (1997), 431–444