Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics
Matematičeskoe modelirovanie, Tome 14 (2002) no. 9, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

The algorithm of transfer of boundary conditions with controlled accuracy is offered. It is simple and effective on expenses of machine time and operative computer memory.
@article{MM_2002_14_9_a0,
     author = {Yu. I. Vinogradov and A. Yu. Vinogradov and Yu. A. Gusev},
     title = {Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {14},
     number = {9},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_9_a0/}
}
TY  - JOUR
AU  - Yu. I. Vinogradov
AU  - A. Yu. Vinogradov
AU  - Yu. A. Gusev
TI  - Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 3
EP  - 8
VL  - 14
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_9_a0/
LA  - ru
ID  - MM_2002_14_9_a0
ER  - 
%0 Journal Article
%A Yu. I. Vinogradov
%A A. Yu. Vinogradov
%A Yu. A. Gusev
%T Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics
%J Matematičeskoe modelirovanie
%D 2002
%P 3-8
%V 14
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_9_a0/
%G ru
%F MM_2002_14_9_a0
Yu. I. Vinogradov; A. Yu. Vinogradov; Yu. A. Gusev. Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics. Matematičeskoe modelirovanie, Tome 14 (2002) no. 9, pp. 3-8. http://geodesic.mathdoc.fr/item/MM_2002_14_9_a0/

[1] A. N. Krylov, O raschete balok, lezhaschikh na uprugom osnovanii, AN SSSR, L., 1931

[2] A. Yu. Vinogradov, Yu. I. Vinogradov, “Metod perenosa kraevykh uslovii funktsiyami Koshi–Krylova dlya zhestkikh lineinykh obyknovennykh differentsialnykh uravnenii”, DAN, 373:4 (2000), 474–476, M.

[3] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966 | MR