Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics
Matematičeskoe modelirovanie, Tome 14 (2002) no. 9, pp. 3-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The algorithm of transfer of boundary conditions with controlled accuracy is offered. It is simple and effective on expenses of machine time and operative computer memory.
@article{MM_2002_14_9_a0,
     author = {Yu. I. Vinogradov and A. Yu. Vinogradov and Yu. A. Gusev},
     title = {Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--8},
     year = {2002},
     volume = {14},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_9_a0/}
}
TY  - JOUR
AU  - Yu. I. Vinogradov
AU  - A. Yu. Vinogradov
AU  - Yu. A. Gusev
TI  - Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 3
EP  - 8
VL  - 14
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_9_a0/
LA  - ru
ID  - MM_2002_14_9_a0
ER  - 
%0 Journal Article
%A Yu. I. Vinogradov
%A A. Yu. Vinogradov
%A Yu. A. Gusev
%T Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics
%J Matematičeskoe modelirovanie
%D 2002
%P 3-8
%V 14
%N 9
%U http://geodesic.mathdoc.fr/item/MM_2002_14_9_a0/
%G ru
%F MM_2002_14_9_a0
Yu. I. Vinogradov; A. Yu. Vinogradov; Yu. A. Gusev. Numerical method of transfer of boundary conditions for the stiff differential equations of the building mechanics. Matematičeskoe modelirovanie, Tome 14 (2002) no. 9, pp. 3-8. http://geodesic.mathdoc.fr/item/MM_2002_14_9_a0/

[1] A. N. Krylov, O raschete balok, lezhaschikh na uprugom osnovanii, AN SSSR, L., 1931

[2] A. Yu. Vinogradov, Yu. I. Vinogradov, “Metod perenosa kraevykh uslovii funktsiyami Koshi–Krylova dlya zhestkikh lineinykh obyknovennykh differentsialnykh uravnenii”, DAN, 373:4 (2000), 474–476, M.

[3] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966 | MR