Range~-- a quantitative measure of irregularity of distribution
Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 119-127.

Voir la notice de l'article provenant de la source Math-Net.Ru

A brief survey of main applications of the range: theory of uniform distribution and testing pseudorandom numbers. Presented at a joint session of Scientific Councils of the Institute for Mathematical Modelling and the Keldysh Institute of Applied Mathematics on October 9, 2001.
@article{MM_2002_14_6_a9,
     author = {I. M. Sobol'},
     title = {Range~-- a quantitative measure of irregularity of distribution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--127},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_6_a9/}
}
TY  - JOUR
AU  - I. M. Sobol'
TI  - Range~-- a quantitative measure of irregularity of distribution
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 119
EP  - 127
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_6_a9/
LA  - ru
ID  - MM_2002_14_6_a9
ER  - 
%0 Journal Article
%A I. M. Sobol'
%T Range~-- a quantitative measure of irregularity of distribution
%J Matematičeskoe modelirovanie
%D 2002
%P 119-127
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_6_a9/
%G ru
%F MM_2002_14_6_a9
I. M. Sobol'. Range~-- a quantitative measure of irregularity of distribution. Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 119-127. http://geodesic.mathdoc.fr/item/MM_2002_14_6_a9/

[1] L. M. Sobol', O. V. Nuzhdin, “A new measure of irregularity of distribution”, J. Number Theory, 37:3 (1991), 367–373 | DOI | MR

[2] L. M. Sobol', B. V. Shukhman, “On computational experiments in uniform distribution”, Osterr. Acad. Wiss. Sitzungsber, II, 201 (1992), 161–167 | MR | Zbl

[3] L. M. Sobol', B. V. Shukhman, “Random and quasirandom sequences: numerical estimates of uniform distribution”, Mathematical and Computer Modelling, 18:8 (1993), 39–45 | DOI | MR | Zbl

[4] P. J. Grabner, “Metric results on a new notion of discrepancy”, Math. Slovaca, 42:5 (1992), 615–619 | MR | Zbl

[5] L. M. Sobol', V. L. Turchaninov, Yu. L. Levitan, B. V. Shukhman, Quasirandom Sequence Generators, Keldysh Inst. Appl. Maths., M., 1992

[6] L. M. Sobol', B. V. Shukhman, A. Guinzbourg, “On the distribution of random ranges”, Monte Carlo Methods and Applies, 5:2 (1999), 113–134 | DOI | MR | Zbl

[7] I. M. Sobol, Mnogomernye kvadraturnye formuly i funktsii Khaara, Nauka, M., 1969 | MR

[8] H. Faure, “Discrepance de suites associees à un systeme de numération (en dimension s)”, Acta Arithmetica, 41 (1982), 337–351 | MR | Zbl

[9] L. M. Sobol', B. V. Shukhman, “Integration with quasirandom sequences: numerical experience”, Internat. J.Modem Phys. C, 6:2 (1995), 263–275 | DOI | MR | Zbl

[10] Yu. L. Levitan, I. M. Sobol, “O datchike psevdosluchainykh chisel dlya personalnykh kompyuterov”, Matem. modelirovanie, 2:8 (1990), 119–126 | MR | Zbl

[11] G. Marsaglia, “Random numbers fall mainly in the planes”, Proc. Nat. Acad. Sci., 61 (1968), 25–28 | DOI | MR | Zbl

[12] Dzh. Forsait, M. Malkolm, K. Mouler, Mashinnye metody matematicheskikh vychislenii, Mir, M., 1980 | MR