Numerical solution of a problem of potential field continuation
Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 91-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

An ill-posed problem is considered for continuation of solutions of the Dirichlet problem for the Laplace equation into the domain adjoining a part of the boundary. This problem of potential field continuation is of great importance in gravy- and magneto-exploring. An iterative method is employed based on successive improvement of the boundary condition in an extended domain and solving the standard boundary value problem at each iteration. Issues of numerical implementation of this approach are discussed for the case of continuation of potential fields from a curvilinear surface. Predictions of model problems with perturbed input data are presented.
@article{MM_2002_14_6_a7,
     author = {P. N. Vabishchevich and P. A. Pulatov},
     title = {Numerical solution of a problem of potential field continuation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {91--104},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_6_a7/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
AU  - P. A. Pulatov
TI  - Numerical solution of a problem of potential field continuation
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 91
EP  - 104
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_6_a7/
LA  - ru
ID  - MM_2002_14_6_a7
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%A P. A. Pulatov
%T Numerical solution of a problem of potential field continuation
%J Matematičeskoe modelirovanie
%D 2002
%P 91-104
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_6_a7/
%G ru
%F MM_2002_14_6_a7
P. N. Vabishchevich; P. A. Pulatov. Numerical solution of a problem of potential field continuation. Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 91-104. http://geodesic.mathdoc.fr/item/MM_2002_14_6_a7/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[2] Gravirazvedka. Spravochnik geofizika, Nedra, M., 1981

[3] Magnitorazvedka. Spravochnik geofizika, Nedra, M., 1980 | Zbl

[4] Samarskii A. A., Vabischevich P. N., “Raznostnye metody resheniya obratnykh zadach matematicheskoi fiziki”, Fundamentalnye osnovy matematicheskogo modelirovaniya, Nauka, M., 1997, 5–97 | Zbl

[5] Lattes R., Lions Zh. L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970 | MR | Zbl

[6] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Ekstremalnye metody resheniya nekorrektnykh zadach, Nauka, M., 1988 | MR | Zbl

[7] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[8] Samarskii A. A., Vabischevich P. N., Vasilev V. I., “Iteratsionnoe reshenie retrospektivnoi obratnoi zadachi teploprovodnosti”, Matem. modelirovanie, 9:5 (1997), 119–127 | MR | Zbl

[9] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[10] Tikhonov A. N., Glasko V. B., Litvinenko O. I., Melikhov V. R., “O prodolzhenii potentsiala v storonu vozmuschayuschikh mass na osnove metoda regulyarizatsii”, Izvestiya AN SSSR. Fizika Zemli, 1968, no. 12, 30–48 | MR