Gasdynamic processes in heatengineering plants based on control volume method
Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 3-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a mathematical model of gas and fluid flow in two and three dimensional duct flows. The model is based on numerical control volume method. The model has been applied to the prediction of gasdynamic processes in the duct of heatengineering plants. In all cases, the predicted gasdynamic parameters of flow are in close agreement with the measured behavior.
@article{MM_2002_14_6_a0,
     author = {I. A. Vinogradova and V. G. Zubkov},
     title = {Gasdynamic processes in heatengineering plants based on control volume method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--24},
     publisher = {mathdoc},
     volume = {14},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2002_14_6_a0/}
}
TY  - JOUR
AU  - I. A. Vinogradova
AU  - V. G. Zubkov
TI  - Gasdynamic processes in heatengineering plants based on control volume method
JO  - Matematičeskoe modelirovanie
PY  - 2002
SP  - 3
EP  - 24
VL  - 14
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2002_14_6_a0/
LA  - ru
ID  - MM_2002_14_6_a0
ER  - 
%0 Journal Article
%A I. A. Vinogradova
%A V. G. Zubkov
%T Gasdynamic processes in heatengineering plants based on control volume method
%J Matematičeskoe modelirovanie
%D 2002
%P 3-24
%V 14
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2002_14_6_a0/
%G ru
%F MM_2002_14_6_a0
I. A. Vinogradova; V. G. Zubkov. Gasdynamic processes in heatengineering plants based on control volume method. Matematičeskoe modelirovanie, Tome 14 (2002) no. 6, pp. 3-24. http://geodesic.mathdoc.fr/item/MM_2002_14_6_a0/

[1] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 | MR

[2] Paskonov V. M., Polezhaev V. I., Chudov L. A., Chislennoe issledovanie protsessov teplo- i massoobmena, Nauka, M., 1984 | Zbl

[3] Zenkevich O., Morgan K., Konechnye elementy i approksimatsiya, Mir, M., 1986 | MR

[4] Gallager R., Metod konechnykh elementov. Osnovy, Mir, M., 1984 | MR

[5] P. Shenen (red.), M. Kosnar (red.), I. Gardan (red.), i dr., Matematika i SAPR, Kn. 1, Mir, M., 1988

[6] Patankar S. V., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat, M., 1984

[7] Belov I. A., Kudryavtsev N. A., Teplootdacha i soprotivlenie paketov trub, Energoatomizdat. Leningradskoe otdelenie, L., 1987

[8] Spalding D. B., “A novel finite difference formulation for differential expressions involving both first and second derivatives”, Internat. J. for Numerical Methods in Engineering, 4:4 (1974), 551–559 | DOI

[9] Leschziner M. A., “Practical evaluation of three finite difference schemes for the computation of steady-state recirculating flows”, Computer Methods in Applied Mechanics and Engineering, 23:3 (1980), 293–312 | DOI | Zbl

[10] Leshtsiner M., Rodi V., “Raschet koltsevykh i sdvoennykh parallelnykh strui posredstvom razlichnykh konechno-raznostnykh skhem i modelei turbulentnosti”, Teoreticheskie osnovy inzhenernykh raschetov, 103:2 (1981), 299–308

[11] Isaev S. A., “O vliyanii approksimatsionnoi vyazkosti pri raschete turbulentnykh techenii s tsirkulyatsionnymi zonami”, Inzhenerno-fizicheskii zhurnal, 48:6 (1985), 918–921

[12] Han T., Humphrey J. A. C., Launder B. E., “A comparison of hybrid and quadratic-upstream differencing of high Reynolds elliptic flows”, Computer Methods in Applied Mechanics and Engineering, 29:1 (1981), 81–95 | DOI

[13] Raithby G. D., “Skew upwind differencing schemes for problems involving fluid flow”, Computer Methods in Applied Mechanics and Engineering, 9:2 (1976), 153–164 | DOI | MR | Zbl

[14] Leonard B. P., “A stable and accurate convective modeling procedure based on quadratic upstream interpolation”, Computer Methods in Applied Mechanics and Engineering, 19:1 (1979), 59–98 | DOI | MR | Zbl

[15] Anderson D., Tannekhill Dzh., Pletcher R., Vychislitelnaya gidromekhanika i teploobmen, T. 1, Mir, M., 1990 | Zbl

[16] Runchal A. K., Wolfshtein M., “Numerical integration procedure for the steady-state Navier–Stokes equations”, Journal of Mechanical Eng. Sci., 11:5 (1969), 445–453 | DOI | Zbl

[17] De Vahl Davis, Mallinson G. D., “An evaluation of upwind and central difference approximations by a study of recirculating flow”, Comput. and Fluids, 4:1 (1976), 29–43 | DOI | MR | Zbl

[18] Thompson J. F., Thames F. C., Mastin C. W., “Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies”, Journal Comp. Phys., 15 (1974), 299–319 | DOI | Zbl

[19] S. Ya. Grabarnik (red.), V. K. Lyakhov (red.), K. V. Migalin (red.) i dr., “Chislennyi metod postroeniya ortogonalnoi setki, soglasovannoi s krivolineinoi granitsei”, Izvestiya VUZov. Aviatsionnaya tekhnika, 1991, no. 3, 31–35

[20] Wang Z. J., “A quadtree-based adaptive Cartesian/Quad grid flow solver for Navier–Stokes equations”, Comput. and Fluids, 27:4 (1998), 529–549 | DOI | Zbl

[21] Gribova E. A., Zubkov V. G., “Formirovanie raschetnoi setki, soglasovannoi s granitsami raschetnoi oblasti v mekhanike zhidkosti i gaza”, Sbornik nauchnykh trudov Moskovskogo gosudarstvennogo industrialnogo universiteta, 1, MPIU, M., 2000, 124–129

[22] P. M. Petrichenko (red.), Elementy sistemy avtomatizirovannogo proektirovaniya DVS: Algoritmy prikladnykh programm, eds. Petrichenko P. M., Baturin S. A., Isakov Yu. N. i dr., Mashinostroenie, Leningradskoe otd-e, L., 1990

[23] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974

[24] Buleev N. I., Timukhin G. I., “Techenie vyazkoi neszhimaemoi zhidkosti na vkhodnom uchastke ploskogo kanala”, Zhurnal prikladnoi mekhaniki i tekhnicheskoi fiziki, 1967, no. 3, 126–130

[25] Wang V. L., Longwell P. A., “Laminar flow in the inlet section of parallel plates”, Amer. Inst. Chem. Engineering Journal, 10:3 (1964), 323–339

[26] Zhukauskas A. A., Konvektivnyi perenos v teploobmennikakh, Nauka, M., 1982

[27] Sinelnikov L. N., Fomin V. K., “Vybor skhemy raspredeleniya vody v rubashkakh okhlazhdeniya avtomobilnogo dvigatelya”, Trudy Moskovskogo avtomobilnogo zavoda im. I. A. Likhacheva, 15, TsNIITEIAVTOPROM, M., 1987, 9–28

[28] Gosmen A. D. (red.), Pan V. M. (red.), Ranchel A. K. (red.) i dr., Chislennye metody issledovaniya techenii vyazkoi zhidkosti, Mir, M., 1972

[29] Durst F., Faunti M., Obi S., “Eksperimentalnoe i chislennoe issledovanie dvumernogo techeniya v kanale s dvumya posledovatelno raspolozhennymi peregorodkami”, Teoreticheskie osnovy inzhenernykh raschetov, 1988, no. 4, 256–266

[30] Launder B. E., Spalding D. B., Mathematical models of turbulence, Academic Press, London, New York, 1972 | MR | Zbl

[31] Douglas J., Gunn J. E., “The ADI methods for parabolic and hyperbolic equations”, Numeriche Mathematics, 6 (1964), 428–453 | DOI | MR | Zbl

[32] Pratap V. S., Spalding D. B., “Numerical computations of the flow in curved ducts”, The Aeronautical Quarterly, 26:3 (1975), 219–228

[33] Ghia K. N., Sokhey J. S., “Laminar incompressible viscous flow in curved ducts of regular cross-sections”, Transactions of the ASME. Journal of Fluids Engineering, Ser. I, 99:4 (1977), 640–648